
www.manaraa.com

www.manaraa.com

Lecture Notes in Computer Science 5082
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

www.manaraa.com

Bertrand Meyer Jerzy R. Nawrocki
Bartosz Walter (Eds.)

Balancing Agility
and Formalism
in Software Engineering

Second IFIP TC 2 Central and East European Conference
on Software Engineering Techniques, CEE-SET 2007
Poznań, Poland, October 10-12, 2007
Revised Selected Papers

13

www.manaraa.com

Volume Editors

Bertrand Meyer
ETH Zentrum, Department of Computer Science
Clausiusstr. 59, 8092 Zürich, Switzerland
E-mail: bertrand.meyer@inf.ethz.ch

Jerzy R. Nawrocki
Poznań University of Technology, Institute of Computing Science
ul. Piotrowo 2, 60-965 Poznań, Poland
E-mail: jerzy.nawrocki@put.poznan.pl

Bartosz Walter
Poznań University of Technology, Institute of Computing Science
ul. Piotrowo 2, 60-965 Poznań, Poland
E-mail: Bartosz.Walter@cs.put.poznan.pl

Library of Congress Control Number: 2008932464

CR Subject Classification (1998): D.2, K.6.3, K.6, K.4.3, F.3.2, H.2, J.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-85278-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85278-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© IFIP International Federation for Information Processing 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12446049 06/3180 5 4 3 2 1 0

www.manaraa.com

Preface

The origins of CEE-SET go back to the end of the 1990s, when the Polish Infor-
mation Processing Society together with other partners organized the Software
Engineering Education Symposium, SEES 1998, sponsored by CEPIS, and the
Polish Conference on Software Engineering, KKIO 1999 (the latter has become
an annual event). A few years later KKIO changed to an international conference
on Software Engineering Techniques, SET 2006, sponsored by Technical Com-
mittee 2 (Software: Theory and Practice) of the International Federation for
Information Processing, IFIP [http://www.ifip.org/]. In 2007 the conference got
a new name: second IFIP TC2 Central and East-European Conference on Soft-
ware Engineering Techniques, CEE-SET 2007. It took place in Poznan, Poland,
and lasted for three days, from October 10 to 12, 2007 (the details are on the
conference web page http://www.cee-set.org/2007). The conference aim was to
bring together software engineering researchers and practitioners, mainly from
Central and East-European countries (but not only), and allow them to share
their ideas and experience. The special topic for 2007 was“Balancing Agility and
Formalism in Software Engineering.”

The conference was technically sponsored by:

– IFIP Technical Committee 2, Software: Theory and Practice
– Gesellschaft für Informatik, Special Interest Group Software Engineering
– John von Neumann Computer Society (NJSZT), Hungary
– Lithuanian Computer Society
– Polish Academy of Sciences, Committee for Informatics
– Polish Information Processing Society
– Slovak Society for Computer Science

Financial support was provided by IBM Software Laboratory in Krakow,
Microsoft Research, Microsoft Polska, Polish Information Processing Society, and
the XPrince Consortium.

The conference program consisted of 3 keynote speeches given by Scott W.
Ambler (IBM, Canada), Bertrand Meyer (ETH Zurich), and Dieter Rombach
(Fraunhofer IESE, Kaiserslautern), 21 regular presentations selected from 73
submissions (success rate was about 28%), and 15 work-in-progress presenta-
tions. The International Program Committee nominated the following three reg-
ular papers for the Best Paper Award:

– Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Alberto Sillitti, and
Giancarlo Succi: “A Case Study on the Impact of Refactoring on Quality
and Productivity in an Agile Team”

– Adam Trendowicz, Michael Ochs, Axel Wickenkamp, Juergen Muench,
Yasushi Ishigai, and Takashi Kawaguchi: “An Integrated Approach for Iden-
tifying Relevant Factors Influencing Software Development Productivity”

www.manaraa.com

VI Preface

– Mesfin Mulugeta, and Alexander Schill: “A Framework for QoS Contract
Negotiation in Component-Based Applications”

After the above paper presentations, the Best Paper Award Committee chaired
by Miklos Biro (IFIP TC2 member) decided that the IFIP TC2 Manfred Paul
Award should go to the authors of the second paper: A. Trendowicz, M. Ochs,
A. Wickenkamp, J. Muench, Y. Ishigai and T. Kawaguchi.

The IFIP TC2 Manfred Paul Award is an annual award. “The award is made
for a published paper, and consists of a prize of 1024 euros and a plaque or
certificate. The award is named after Manfred Paul, who was chairman of TC2
from 1977 to 1986 and the representative for Germany from 1973.”
[http://www.ifip.or.at/awards.htm].

Another award at CEE-SET 2007 was the Best Presentation Award. Here the
jury was the audience of the conference. Two presenters won the competition:
Miroslaw Ochodek and Ramin Tavakoli Kolagari.

This volume contains two of the three keynotes and all the regular presen-
tations given at the conference. We believe that publishing these high-quality
papers will support a wider discussion on balancing agility and formalism in
software development and, more generally, on software engineering techniques.

May 2008 Bertrand Meyer
Jerzy Nawrocki
Bartosz Walter

www.manaraa.com

Organization

Program Chairs

Bertrand Meyer
Jerzy Nawrocki

Program Committee

Pekka Abrahamsson
Vincenzo Ambriola
Uwe Assmann
Hubert Baumeister
Maria Bielikova
Stefan Biffl
Miklos Biro
Pere Botella
Albertas Caplinskas
Radovan Cervenka
Paul Clements
Jutta Eckstein
Evram Eskenazi
Gabor Fazekas
Kurt Geihs
Janusz Górski
Paul Grünbacher
Nicolas Guelfi
Tibor Gyimothy
Heinrich Hussmann
Zbigniew Huzar
Stefan Jähnichen
Paul Klint
Jan Kollar
Laszlo Kozma

Henryk Krawczyk
Leszek Maciaszek
Jan Madey
Lech Madeyski
Zygmunt Mazur
Juergen Muench
Pavol Navrat
Barbara Paech
Andras Pataricza
Alexander K. Petrenko
Frantisek Plasil
Erhard Ploedereder
Klaus Pohl
Saulius Ragaisis
Felix Redmil
Karel Richta
Krzysztof Sacha
Wilhelm Schaefer
Helen Sharp
Giancarlo Succi
Tomasz Szmuc
Andrey Terekhov
Bartosz Walter
Jaroslav Zendulka
Krzysztof Zieliński

Local Organization

Micha�l Jasiński
Jan Kniat
Ewa �Lukasik
�Lukasz Macuda

Bartosz Michalik
Ewa Nawrocka
Miroslaw Ochodek
�Lukasz Olek

www.manaraa.com

VIII Organization

Magdalena Olek
Joanna Radke

Bartosz Walter
Adam Wojciechowski

External Reviewers

Marc Alier
Richard Atterer
Alexei Barantsev
Jerzy B�laszczyński
Bartosz Bogacki
Alfredo Capozucca
�Lukasz Cyra
Matthias Gehrke
Joel Greenyer
Timea Illes-Seifert
Janusz Jab�lonowski
Agata Janowska
Olek Jarz ↪ebowicz
Micha�l Jasiński
Bartosz Michalik
Jakub Miler

Raimund Moser
Miroslaw Ochodek
�Lukasz Olek
Maciej Piasecki
B�lażej Pietrzak
Gergely Pintér
Andreas Pleuss
Benôıt Ries
Zdzis�law Sp�lawski
�Lukasz Szala
Dániel Tóth
Artur Wilczek
Dietmar Winkler
Adam Wojciechowski
Michael Zapf
Sergei Zelenov

www.manaraa.com

Table of Contents

1. Keynotes

Agile Software Development at Scale . 1
Scott W. Ambler

Formalisms in Software Engineering: Myths Versus Empirical Facts 13
Dieter Rombach and Frank Seelisch

2. Measurement

Extending GQM by Argument Structures . 26
�Lukasz Cyra and Janusz Górski

On Metamodel-Based Design of Software Metrics . 40
Erki Eessaar

Automatic Transactions Identification in Use Cases 55
Miros�law Ochodek and Jerzy Nawrocki

3. Processes

A Collaborative Method for Reuse Potential Assessment in
Reengineering-Based Product Line Adoption . 69

Muhammad Asim Noor, Paul Grünbacher, and Christopher Hoyer

Corporate-, Agile- and Open Source Software Development: A Witch’s
Brew or An Elixir of Life? . 84

Morkel Theunissen, Derrick Kourie, and Andrew Boake

Capable Leader and Skilled and Motivated Team Practices to Introduce
eXtreme Programming . 96

Lech Madeyski and Wojciech Biela

4. UML

Platform-Independent Programming of Data-Intensive Applications
Using UML . 103

Grzegorz Falda, Piotr Habela, Krzysztof Kaczmarski,
Krzysztof Stencel, and Kazimierz Subieta

Towards UML-Intensive Framework for Model-Driven Development 116
Darius Silingas and Ruslanas Vitiutinas

www.manaraa.com

X Table of Contents

UML Static Models in Formal Approach . 129
Marcin Szlenk

5. Experiments

Does Test-Driven Development Improve the Program Code? Alarming
Results from a Comparative Case Study . 143

Maria Siniaalto and Pekka Abrahamsson

Measuring the Human Factor with the Rasch Model 157
Dirk Wilking, David Schilli, and Stefan Kowalewski

Empirical Analysis of a Distributed Software Development Project 169
Przemyslaw Cichocki and Alessandro Maccari

6. Tools

Extending Software Architecting Processes with Decision-Making
Activities . 182

Rafael Capilla and Francisco Nava

A Tool for Supporting Feature-Driven Development 196
Marek Rychlý and Pavĺına Tichá

In-Time Role-Specific Notification as Formal Means to Balance Agile
Practices in Global Software Development Settings 208

Dindin Wahyudin, Matthias Heindl, Benedikt Eckhard,
Alexander Schatten, and Stefan Biffl

7. Best Papers Session

An Integrated Approach for Identifying Relevant Factors Influencing
Software Development Productivity . 223

Adam Trendowicz, Michael Ochs, Axel Wickenkamp, Jürgen Münch,
Yasushi Ishigai, and Takashi Kawaguchi

A Framework for QoS Contract Negotiation in Component-Based
Applications . 238

Mesfin Mulugeta and Alexander Schill

A Case Study on the Impact of Refactoring on Quality and Productivity
in an Agile Team . 252

Raimund Moser, Pekka Abrahamsson, Witold Pedrycz,
Alberto Sillitti, and Giancarlo Succi

8. Change

Modeling of Requirements Tracing . 267
Matthias Heindl and Stefan Biffl

www.manaraa.com

Table of Contents XI

Support for Cooperative Design of End-User Tailorable Software 279
Jeanette Eriksson

Manifoldness of Variability Modeling — Considering the Potential for
Further Integration . 291

Mark-Oliver Reiser, Ramin Tavakoli Kolagari, and Matthias Weber

Author Index . 305

www.manaraa.com

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 1–12, 2008.
© IFIP International Federation for Information Processing 2008

Agile Software Development at Scale

Scott W. Ambler

Practice Leader Agile Development, IBM Rational
scott_ambler@ca.ibm.com

Abstract. Since 2001 agile software development approaches are being adopted
across a wide range of organizations and are now being applied at scale. There
are eight factors to consider – team size, geographical distribution, entrenched
culture, system complexity, legacy systems, regulatory compliance, organiza-
tional distribution, governance and enterprise focus – when scaling agile. Luck-
ily a collection of techniques and strategies exist which scale agile approaches,
including considering the full development lifecycle, Agile Model Driven De-
velopment (AMDD), continuous independent testing, adopting proven strate-
gies, agile database techniques, and lean development governance. It is possible
to scale agile approaches, but you will need to look beyond the advice provided
by the “agile in the small” literature.

1 Introduction

Agile software development is being adopted by both the majority of organizations, a
recent survey [1] shows that 69% of organizations are taking agile approaches on one
or more projects, and by a wide range of organizations. The same survey also indi-
cated that organizations are attempting large agile projects, several respondents indi-
cated that they were not only doing but successful with agile project teams of over
200 people, and many indicated that they were applying agile in distributed environ-
ments. Agile project teams also appear to have higher rates of success than do tradi-
tional teams [2] indicating that agile approaches are likely here to stay.

Agile techniques have clearly been proven in simple settings and we’re seeing that
many organizations are now applying agile at scale. In this paper I explore the factors
surrounding apply agile techniques at scale, large or distribute teams are just two of
the many issues which agile teams now face, and overview a collection of techniques
which I’ve applied successfully in practice.

2 Scaling Factors

When you read some of the agile literature it sounds rather naïve at times. Although
we would all love nothing more than to work with small, co-located, closely-knit
teams of highly-skilled professionals who are building brand new systems it rarely
seems to be the case in practice. Instead one or more “scaling factors” seems to ruin
this perfect scenario for us. When you think about scaling agile approaches the first
factors that you consider are team size and geographical distribution [3], and although

www.manaraa.com

2 S.W. Ambler

these are clearly important scaling factors they’re not the only ones. At IBM Rational
we have found that when applying agile strategies at scale you are likely to run into
one or more of the following complexity factors:

1. Team size. Large teams will be organized differently than small teams, and they'll
work differently too. Strategies that work for small co-located teams won’t be suf-
ficient for teams of several hundred people.

2. Geographical distribution. Some members of a team, including stakeholders, may
be in different locations. Even being in different cubicles within the same building
can erect barriers to communication, let alone being in different cities or even on
different continents.

3. Entrenched culture. Most agile teams need to work within the scope of a larger
organization, and that larger organization isn't always perfectly agile. The existing
people, processes, and policies aren’t always ideal. Hopefully that will change in
time, but we still need to get the job done right now.

4. System complexity. The more complex the system the greater the need for a viable
architectural strategy. An interesting feature of the Rational Unified Process (RUP)
[4] is that its Elaboration phase's primary goal is to prove the architecture via the
creation of an end-to-end, working skeleton of the system. This risk-reduction
technique, described later in this paper, is clearly a concept which Extreme Pro-
gramming (XP) [5] and Scrum [6] teams can clearly benefit from.

5. Legacy systems. It can be very difficult to leverage existing code and data sources
due to quality problems. The code may not be well written, documented, or even
have tests in place, yet that doesn't mean that your agile team should rewrite every-
thing from scratch. Some legacy data sources are questionable at best, or the own-
ers of those data sources difficult to work with, yet that doesn't given an agile team
license to create yet another database.

6. Regulatory compliance. Regulations, including the Sarbanes-Oxley act, BASEL-II,
and FDA statutes can increase the documentation and process burden on your pro-
jects. Complying with these regulations while still remaining as agile as possible
can be a challenge.

7. Organizational distribution. When a team is made up of people working for differ-
ent divisions, or from different companies (such as contractors, partners, or con-
sultants), then management complexity rises.

8. Degree of governance. If you have one or more IT projects then you have an IT
governance process in place. How formal it is, how explicit it is, and how effective
it is will be up to you. Agile/lean approaches to governance are based on collabora-
tive approaches which enable teams to do the right thing, as opposed to traditional
approaches which implement command-and-control strategies [7]. More on this
later.

9. Enterprise focus. It is possible to address enterprise issues, including enterprise
architecture, portfolio management, and reuse within an agile environment. The
Enterprise Unified Process (EUP) extends evolutionary processes such as RUP or
XP to bring an enterprise focus to your IT department [8].

The point is that agile is relative, that different environments will require different
strategies to scale agile approaches effectively. This implies that you need to have a
collection of techniques at your disposal.

www.manaraa.com

 Agile Software Development at Scale 3

3 Strategies for Scaling Agile Approaches

It is not only possible to scale agile software development approaches, the strategies
to do so already exist. These strategies are:

• Consider the full system lifecycle
• Agile Model Driven Development (AMDD)
• Continuous independent testing
• Risk and value-driven development
• Agile database techniques
• Lean development governance.

3.1 Consider the Full System Lifecycle

Figure 1 depicts a system development lifecycle (SDLC) which shows the phases and
major activities involved with the development and release into production of a sys-
tem following an agile approach [9]. There are four phases to this SDLC, taking their
name from the phases of the Unified Process [4, 8]:

• Inception. This is the initial phase of the project where you gain initial funding,
perform initial requirements and architecture envisioning, obtain initial resources,
and set up your environment. The goal is to define a firm foundation for your pro-
ject team. This phase is also referred to as Iteration 0, Sprint 0, and Warm Up by
various agile methods.

• Elaboration & Construction. During this phase you develop working software
which meets the needs of your stakeholders. This phase is also referred to as De-
velopment, Construction, and Implementation by various agile methods.

• Transition. During this phase you do the work required to successfully deploy your
system into production. This includes finalizing testing, finalizing documentation,
baselining your project work products, training end users, training operations and
support staff, and running pilot programs as necessary. This phase is also referred
to as Release, Deployment, or End Game by various agile methods.

• Production. During this phase, typically the majority of the system lifecycle, you
operate and support the system and your end users (hopefully) use it. This phase is
also referred to as Maintenance and Support by some agile methods.

There are several reasons why it is important to adopt the lifecycle of Figure 1.
First, too many agile teams focus on the construction aspects of the SDLC without
taking into account the complexities of initiating a project, deploying into production,
or even running the system once it is in production. The risks addressed by these
phases are critical regardless of scale, but increase in importance in proportion to the
rise in complexity resulting from the scaling factors mentioned earlier. Second, the
lifecycle explicitly includes important scaling techniques such as initial requirements
and architecture envisioning as well as continuous independent testing.

www.manaraa.com

4 S.W. Ambler

Fig. 1. The Agile System Development Lifecycle (SDLC)

Fig. 2. The Agile Model Driven Development (AMDD) lifecycle for a project

www.manaraa.com

 Agile Software Development at Scale 5

3.2 Agile Model Driven Development (AMDD)

As the name implies, Agile Model Driven Development (AMDD) is the agile version
of Model Driven Development (MDD). MDD is an approach to software develop-
ment where extensive models are created before source code is written. With tradi-
tional MDD a serial approach to development is often taken where comprehensive
models are created early in the lifecycle. With AMDD you create agile models which
are just barely good enough for the current situation at hand to that drive your overall
development efforts. Figure 2 depicts the AMDD lifecycle for a project.

As you can see in Figure 2 there are four critical modeling and specification
activities:

1. Envisioning. The envisioning effort is typically performed during the first week of
a project, the goal of which is to identify the scope of your system and a likely ar-
chitecture for addressing it. To do this you will do both high-level requirements
and high-level architecture modeling. The goal isn't to write detailed specifications
but instead to explore the requirements and come to an overall strategy for your
project. For short projects (perhaps several weeks in length) you may do this work
in the first few hours and for long projects (perhaps on the order of twelve or more
months) you may decide to invest two weeks in this effort due to the risks inherent
in over modeling.

2. Iteration modeling. At the beginning of each Construction iteration the team must
plan out the work that they will do that iteration, and an often neglected aspect of
this effort is the required modeling activities implied by the technique. Agile
teams implement requirements in priority order, as you can see with the work item
stack of Figure 1, pulling an iteration's worth of work off the top of the stack. To
do this you must be able to accurately estimate the work required for each require-
ment, then based on your previous iteration's velocity (a measure of how much
work you accomplished) you pick that much work off the stack. To estimate a
work item effectively you will need to think through how you intend to implement
it, and very often you’ll model (often using inclusive tools such as whiteboards or
paper) to do so.

3. Model storming. Model storming is just in time (JIT) modeling: you identify an
issue which you need to resolve, you quickly grab a few team mates who can help
you, the group explores the issue, and then everyone continues on as before. These
“model storming sessions” are typically impromptu events, one project team mem-
ber will ask another to model with them, typically lasting for five to ten minutes
(it’s rare to model storm for more than thirty minutes). The people get together,
gather around a shared modeling tool (e.g. the whiteboard), explore the issue until
they're satisfied that they understand it, then they continue on (often coding). Ex-
treme programmers (XPers) would call modeling storming sessions stand-up de-
sign sessions or customer Q&A sessions.

4. Test-driven development (TDD). TDD is a technique where you write a single test
and then just enough production code to fulfill that test [11]. Not only are you vali-
dating your software to the extent of your understanding of the stakeholder’s intent
up to that point, you are also specifying your software on a JIT basis. In short, with
TDD agile teams capture detailed specifications in the form of executable tests in-
stead of static documents or models.

www.manaraa.com

6 S.W. Ambler

Sinaalto and Abrahamsson [12] found that TDD may produce less complex code
but that the overall package structure may be difficult to change and maintain. In
other words, they found that although TDD is effective for “design in the small” that
it is not effective for “design in the large”. AMDD enables you to scale TDD through
initial envisioning of the requirements and architecture as well as just-in-time (JIT)
modeling at the beginning and during construction iterations.

AMDD also helps to scale agile software development when the team is large
and/or distributed and when “the team” is the entire IT effort at the enterprise level.
Figure 3 shows an agile approach to architecture at the program and enterprise levels
[13, 14]. The architecture owners, the agile term for architects, develop the initial
architecture vision through some initial modeling. They then become active partici-
pants on development teams, often taking on the role of architecture owner or techni-
cal team lead, and thereby help the team implement their part of the overall
architecture. They take issues, and what they’ve learned from their experience on the
project teams, back to the architecture team on a regular basis (at least weekly) to
evolve the architecture artifacts appropriately.

Fig. 3. An agile approach to program/enterprise architecture

3.3 Continuous Independent Testing

Although AMDD scales the specification aspects of TDD, it does nothing for the
validation aspects. TDD is in effect an approach to confirmatory testing where you
validate the system to the level of your understanding of the requirements. This is the
equivalent of “smoke testing” or testing against the specification – while important, it

www.manaraa.com

 Agile Software Development at Scale 7

isn't the whole validation picture. The fundamental challenge with confirmatory test-
ing, and hence TDD, is that it assumes that stakeholders understand and can describe
their requirements. Although iterative approaches increase the chance of this there are
no guarantees. A second assumption of TDD is that developers have the skills to write
and run the tests, skills that can be gained over time but which they may not have
today.

The implication is that you need to add independent, investigative testing practices
into your software process [15]. The goal of investigative testing is to explore issues
that your stakeholders may not have thought of, such as usability issues, system inte-
gration issues, production performance issues, security issues, and a multitude of
others. Agile teams, particularly those working at scale, often having a small inde-
pendent test team working in parallel with them, as you can see depicted in Figure 1.
The development team deploys the current working build into the testing sandbox, an
environment which attempts to simulate the production environment. This deploy-
ment effort occurs at least once an iteration, although minimally I suggest doing so at
least once a week if not nightly (assuming your daily build was successful).

The independent testers don't need a lot of details: The only documentation that
they might need is a list of changes since the last deployment so that they know what
to focus on first, because most likely new defects would have been introduced in the
implementation of the changes. They will use complex, and often expensive, tools to
do their jobs and will usually be very highly skilled people.

When the testers find a potential problem, it might be what they believe is missing
functionality or it might be something that doesn't appear to work properly, which
they write up as a “change story”. Change stories are basically the agile form of a
defect report or enhancement request. The development team treats change stories
like requirements—they estimate the effort to address the requirement and ask their
project stakeholder(s) to prioritize it accordingly. Then, when the change story makes
it to the top of their prioritized work-item list, they address it at that point in time.
Any potential defect found via independent investigative testing becomes a known
issue that is then specified and validated via TDD. Because TDD is performed in an
automated manner to support regression testing, the implication is that the investiga-
tive testers do not need to be as concerned about automating their own efforts, but
instead can focus on the high-value activity of defect detection.

3.4 Risk and Value-Driven Development

The explicit phases of the Unified Process (UP) and their milestones are important
strategies for scaling agile software development to meet the real-world needs of
modern organizations. The UP lifecycle is risk and value driven [16]. What this
means is that UP project teams actively strive to reduce both business and technical
risk early in the lifecycle while delivering concrete feedback throughout the entire
lifecycle in the form of working software. Where agile processes such as XP and
Scrum are clearly value driven, they can be enhanced to address risk more effectively.
This is particularly important at scale due to the increased risk associated with the
greater complexity of such projects.

www.manaraa.com

8 S.W. Ambler

Each UP phase addresses a different kind of risk:

1. Inception. This phase focuses on addressing business risk by having you drive to
scope concurrence amongst your stakeholders. Most projects have a wide range of
stakeholders, and if they don't agree to the scope of the project and recognize that
others have conflicting or higher priority needs you project risks getting mired in
political infighting.

2. Elaboration. The goal of this phase is to address technical risk by proving the ar-
chitecture through code. You do this by building and end-to-end skeleton of your
system which implements the highest-risk requirements. These high-risk require-
ments are often the high-business-value ones anyway, so you usually need to do
very little reorganization of your work items stack to achieve this goal.

3. Construction. This phase focuses on implementation risk, addressing it through the
creation of working software each iteration. This phase is where you put the flesh
onto the skeleton.

4. Transition. The goal of this phase is to address deployment risk. There is usually a
lot more to deploying software than simply copying a few files onto a server, as I
indicated above. Deployment is often a complex and difficult task, one which you
often need good guidance to succeed at.

5. Production. The goal of this phase is to address operational risk. Once a system is
deployed your end-users will work with it, your operations staff will keep it up and
running, and your support staff will help end users to be effective. You need effec-
tive processes in place to achieve these goals.

The first four phases end with a milestone review, which could be as simple as a
short meeting, where you meet with prime stakeholders who will make a “go/no-go"
decision regarding your system. They should consider whether the project still makes
sense, perhaps the situation has changed, and that you're addressing the project risks
appropriately. This is important for “agile in the small” but also for “agile in the
large” because at scale your risks are often much greater. These milestone reviews
enable you to lower project risk. Although agile teams appear to have a higher success
rate than traditional teams, some agile projects are still considered failures [2]. The
point is that it behooves us to actively monitor development projects to determine if
they're on track, and if not either help them to get back on track or cancel them as
soon as we possibly can.

3.5 Agile Database Techniques

Data is an important aspect of any business application, and to a greater extent of your
organization’s assets as a whole. Just as your application logic can be developed in an
agile manner, so can your data-oriented assets [13]. To scale agile effectively, all
members of the team must work in an agile manner, including data professionals. The
following techniques enable data professionals to be active members of agile teams:

1. Database refactoring. A database refactoring is a simple change to a database
schema that improves its design while retaining both its behavioral and informa-
tional semantics [17]. A database schema includes both structural aspects such as
table and view definitions as well as functional aspects such as stored procedures

www.manaraa.com

 Agile Software Development at Scale 9

and triggers. A database refactoring is conceptually more difficult than a code
refactoring; code refactorings only need to maintain behavioral semantics while da-
tabase refactorings also must maintain informational semantics. The process of da-
tabase refactoring is the act of applying database refactorings in order to evolve an
existing database schema, either to support evolutionary/agile development or to
fix existing database schema problems.

2. Database testing. Databases often persist mission-critical data which is updated by
many applications and potentially thousands if not millions of end users. Further-
more, they implement important functionality in the form of database methods
(stored procedures, stored functions, and/or triggers) and database objects (e.g.
Java or C# instances). The best way to ensure the continuing quality of these as-
sets, at least from a technical point of view, is to have a full regression test suite
which you can run on a regular basis.

3. Continuous database integration. Continuous integration is a development practice
where developers integrate their work frequently, at least daily, where the integra-
tion is verified by an automated build. The build includes regression testing and
possibly static analysis of the code. Continuous database integration is the act of
performing continuous integration on your database assets. Database builds may
include the creation of the database schema from scratch, something that you
would only do for development and test databases, as well as database regression
testing and potential static analysis of the database contents. Continuous integra-
tion reduces the average amount of time between injecting a defect and finding it,
improving your opportunities to address database and data quality problems before
they get out of control.

4. Agile data modeling. Agile data modeling is the act of exploring data-oriented
structures in an iterative, incremental, and highly collaborative manner. Your data
assets should be modeled, via an AMDD approach, along with all other aspects of
what you are developing.

3.6 Lean Development Governance

Governance is critical to the success of any IT department, and it is particularly im-
portant at scale. Effective governance isn’t about command and control, instead the
focus is on enabling the right behaviors and practices through collaborative and sup-
portive techniques. It is far more effective to motivate people to do the right thing
than it is to try to force them to do so. Per Kroll and myself have identified a collec-
tion of practices that define a lean approach to governing software development pro-
jects [7]. These practices are:

1. Adapt the Process. Because teams vary in size, distribution, purpose, criticality,
need for oversight, and member skillset you must tailor the process to meet a
team’s exact needs. Repeatable results, not repeatable processes, should be your
true goal.

2. Align HR Policies With IT Values. Hiring, retaining, and promoting technical
staff requires different strategies compared to non-technical staff.

www.manaraa.com

10 S.W. Ambler

3. Align Stakeholder Policies With IT Values. Your stakeholders may not under-
stand the implications of the decisions that they make, for example that requiring
an “accurate” estimate at the beginning of a project can dramatically increase pro-
ject risk instead of decrease it as intended.

4. Align Team Structure With Architecture. The organization of your project team
should reflect the desired architectural structure of the system you are building to
streamline the activities of the team.

5. Business-Driven Project Pipeline. Invest in the projects that are well-aligned to
the business direction, return definable value, and match well with the priorities
of the enterprise.

6. Continuous Improvement. Strive to identify and act on lessons learned throughout
the project, not just at the end. Embedded Compliance. It is better to build com-
pliance into your day-to-day process, instead of having a separate compliance
process that often results in unnecessary overhead.

7. Continuous Project Monitoring. Automated metrics gathering enables you to
monitor projects and thereby identify potential issues so that you can collaborate
closely with the project team to resolve problems early.

8. Flexible Architectures. Architectures that are service-oriented, component-based,
or object-oriented and implement common architectural and design patterns lend
themselves to greater levels of consistency, reuse, enhanceability, and adaptability.

9. Integrated Lifecycle Environment. Automate as much of the “drudge work”, such
as metrics gathering and system build, as possible. Your tools and processes
should fit together effectively throughout the lifecycle.

10. Iterative Development. An iterative approach to software delivery allows progres-
sive development and disclosure of software components, with a reduction of
overall failure risk, and provides an ability to make fine-grained adjustment and
correction with minimal lost time for rework.

11. Pragmatic Governance Body. Effective governance bodies focus on enabling de-
velopment teams in a cost-effective and timely manner. They typically have a
small core staff with a majority of members being representatives from the gov-
erned organizations.

12. Promote Self-Organizing Teams. The best people for planning work are the ones
who are going to do it.

13. Risk-Based Milestones. You want to mitigate the risks of your project, in particu-
lar business and technical risks, early in the lifecycle. You do this by having
throughout your project several milestones that teams work toward.

14. Scenario-Driven Development. By taking a scenario-driven approach, you can
understand how people will actually use your system, thereby enabling you to
build something that meets their actual needs. The whole cannot be defined with-
out understanding the parts, and the parts cannot be defined in detail without un-
derstanding the whole.

15. Simple and Relevant Metrics. You should automate metrics collection as much as
possible, minimize the number of metrics collected, and know why you’re col-
lecting them.

16. Staged Program Delivery. Programs, collections of related projects, should be
rolled out in increments over time. Instead of holding back a release to wait for a

www.manaraa.com

 Agile Software Development at Scale 11

 subproject, each individual subprojects must sign up to predetermined release
date. If the subproject misses it skips to the next release, minimizing the impact to
the customers of the program.

17. Valued Corporate Assets. Guidance, such as programming guidelines or database
design conventions, and reusable assets such as frameworks and components, will
be adopted if they are perceived to add value to developers. You want to make it
as easy as possible for developers to comply to, and more importantly take advan-
tage of, your corporate IT infrastructure.

4 Conclusion

It is definitely possible to scale Agile software development to meet the real-world
complexities faced by modern organizations. Based on my experiences, I believe that
over the next few years we'll discover that agile approaches scale better than tradi-
tional approaches. Many people have already discovered this, and have adopted some
or all of the strategies outlined in this paper, but as an industry I believe that there isn't
yet sufficient evidence to state this as more than opinion. Time will tell.

References

1. Ambler, S.W.: Dr. Dobb’s Journal Agile Adoption Survey 2008 (2008). Accessed on March
22, 2008, http://www.ambysoft.com/surveys/agileFebruary2008.html

2. Ambler, S.W.: Dr. Dobb’s Journal Project Success Rates Survey 2007 (2007). Accessed on
March 22, 2008, http://www.ambysoft.com/surveys/success2007.html

3. Eckstein, J.: Agile Software Development in the Large: Diving into the Deep. Dorset
House Publishing, New York (2004)

4. Kruchten, P.: The Rational Unified Process: An Introduction, 3rd edn. Addison Wesley
Longman, Reading (2004)

5. Beck, K.: Extreme Programming Explained—Embrace Change. Addison-Wesley Long-
man, Reading (2000)

6. Schwaber, K.: The Enterprise and Scrum. Microsoft Press, Redmond (2007)
7. Kroll, P., Ambler, S.W.: Lean Development Governance (2007). Accessed on March 22, 2008,

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?lang=
en_US&source=swg-ldg

8. Ambler, S.W., Nalbone, J., Vizdos, M.J.: The Enterprise Unified Process: Extending the
Rational Unified Process. Pearson Education, Upper Saddle River (2005)

9. Ambler, S.W.: The Agile System Development Lifecycle (SDLC) (2005). Accessed on
March 22, 2008, http://www.ambysoft.com/essays/agileLifecycle.html

10. Ambler, S.W.: Agile Model Driven Development (AMDD) (2003). Accessed on March
22, 2008, http://www.agilemodeling.com/essays/amdd.htm

11. Astels, D.: Test Driven Development: A Practical Guide. Prentice Hall, Upper Saddle
River (2003)

12. Sinaalto, M., Abrahamsson, P.: Does Test Driven Development Improve the Program
Code? Alarming Results from a Comparative Case Study. In: CEE-SET 2007 Conference
Proceedings (2007)

13. Ambler, S.W.: Agile Database Techniques: Effective Strategies for the Agile Software
Developer. Wiley, New York (2003)

www.manaraa.com

12 S.W. Ambler

14. McGovern, J., Ambler, S.W., Stevens, M.E., Linn, J., Sharan, V., Jo, E.K.: The Practical
Guide to Enterprise Architecture. Prentice Hall PTR, Upper Saddle River (2004)

15. Ambler, S.W.: Agile Testing Strategies. Dr. Dobb’s Journal, January 2007 (2007). Accessed
on March 22, 2008, http://www.ddj.com/development-tools/196603549

16. Kroll, P., MacIsaac, B.: Agility and Discipline Made Easy: Practices from OpenUP and
RUP. Addison Wesley Longman, Reading (2006)

17. Ambler, S.W., Sadalage, P.J.: Refactoring Databases: Evolutionary Database Design. Ad-
dison Wesley, Boston (2006)

Bio

Scott W. Ambler is Practice Leader Agile Development with IBM Rational. Scott has a Master
of Information Science from the University of Toronto and is author of several books in-
cluding Agile Modeling, Agile Database Techniques, and Refactoring Databases. Scott
helps organizations around the world to improve their software processes. He is a Senior
Contributing Editor with Dr. Dobb’s Journal (www.ddj.com) and writes about strategies for
scaling software development at www.ibm.com/developerworks/blogs/page/ambler.

www.manaraa.com

Formalisms in Software Engineering:

Myths Versus Empirical Facts

Dieter Rombach and Frank Seelisch

Fraunhofer Institute for Experimental Software Engineering
{dieter.rombach,frank.seelisch}@iese.fraunhofer.de

Abstract. The importance of software grows in all sectors of industry
and all aspects of life. Given this high dependability on software, the
status of software engineering is less than satisfactory. Accidents, recall
actions, and late projects still make the news every day. Many of the
software engineering research results do not make it into practice, and
thereby the gap between research and practice widens constantly. The
reasons for not making it into practice range from isufficient commit-
ment for professionalization of software development on the industrial
side, to insufficient consideration for practical scale-up issues on the re-
search side, and a tremendous lack of empirical evidence regarding the
benefits and limitations of new software engineering methods and tools
on both sides. The major focus of this paper is to motivate the creation
of credible evidence which in turn will allow for less risky introduction of
new software engineering approaches into practice. In order to overcome
this progress hindering lack of evidence, both research and practice have
to change their paradigms. Research needs to complement each promis-
ing new software engineering approach with credible empirical evidence
from in vitro controlled experiments and case studies; industry needs to
baseline its current state of the practice quantitatively, and needs to con-
duct in vitro studies of new approaches in order to identify their benefits
and limitations in certain industrial contexts.

Keywords: Computer science, [empirical] software engineering, software
development, empiricism, empirical evidence.

1 Introduction

Software plays an ever increasing role in all aspects of our lives. The mere amount
of code embedded in modern, highly integrated products should mandate that
the development of software follow widely agreed principles. Furthermore, these
principles ought to ensure quality goals that have been specified in advance. The
function of software in life supporting systems as well as in numerous standard
applications which allow to perform business processes more efficiently, proves
that software has become vital in all respects.

However, we witness serious system failures resulting from faulty software,
sometimes with tremendous consequences: People die, assets are being lost, and

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 13–25, 2008.
c© IFIP International Federation for Information Processing 2008

www.manaraa.com

14 D. Rombach and F. Seelisch

products need to be recalled by renowned OEMs. Software engineering today,
seen as a practically highly relevant engineering discipline, is not mature enough
considering the role it plays.

Likewise, the relationship between computer science and software engineering
needs to be stated more precisely and lived, so that theoretical research in com-
puter science can be translated into practical methods and procedures that can
be utilized by software engineers in software development projects.

The major claim of this work is that typical shortcomings in the practical
work of software engineers as we witness them today, result from missing or
unacknowledged empirical facts. Discovering facts by empirical studies is the
only way to gain insights in how software development projects should be run
best, i.e., insights in the discipline of software engineering. Empirical facts will
in turn motivate computer science research.

This paper is organized as follows. The following Chap. 2 discusses the role
of software in industry and society, and adds an economic standpoint. How do
companies estimate the importance of software for their business? What are
proven economic guidelines for realizing software development projects?

Chapter 3 summarizes the typical practical problems resulting from imma-
ture software engineering, and identifies the shortcomings of software engineer-
ing in practice. It comes up with general explanations for the problems we
are currently confronted with when developing software in critical settings,
e.g., within tight schedules. Moreover, we argue that the current situation is
likely to become even more critical, as software systems become more and
more complex.

Having detailed practical problems of software engineering, Chap. 4 addresses
the possible solutions to these problems offered by research. Starting with general
principles of computer science we go top-down towards software engineering as
its practical toolbox for developing software, and finally to the most important
ingredient of software engineering: empirical facts.

Chapter 5 illustrates the need for more empirical software engineering, both
generally and by means of the concrete example of the special inspection tech-
nique reading.

We close with an outlook on next steps.

2 The Role of Software in Industry

In the previous section, the spectrum of common problems due to software fail-
ures has been detailed. From an economic standpoint, these problems imply
direct costs as well as great efforts for repairing, fitting, bug-fixing and nec-
essary changes in software versions, products, and processes. In order to save
precious resources, companies need to enforce the usage of best practice methods
and procedures of software engineering.

On the other hand, software engineering has been offering and still offers
completely new ways for developing products.

www.manaraa.com

Formalisms in Software Engineering: Myths Versus Empirical Facts 15

2.1 Software as Driver for Innovation

Due to its enabling role, software has become a major factor in today’s indus-
try. Industrial leaders in the automotive business, in the field of medical de-
vices, and logistics estimate that 80% of all innovation is directly triggered by
software.

However, most non-IT companies do not reflect these estimates in their orga-
nizational structure: Software is important but IT sub-organizations currently
do not seem to be. It is a common model to have these sub-organizations raise
their funds within the company instead of being given basic funding.

We expect that this organizational setup adds to the current problems in
ongoing software projects, as strategic planning cannot be sufficiently considered.

2.2 Economic Aspects of Software Development

In the context of globalization, industrial companies focus more than ever on the
goal parameters quality, cost, and time to market. Especially quality promises
to offer better chances to establish unique selling propositions in the lucrative
upper market segments. For most Western economies, this may offer a way to
legitimate the much higher level of salaries compared to Asian economies.

In terms of software engineering, this means that development projects will
also primarily be managed and steered by these parameters. And especially
concerning the parameter time to market companies face a classical trade-off:
Is it more important to deliver a new software version fast, while taking into
account that more effort will have to be spent on bug-fixing? Or, is it the goal
of the company to minimize costs over the entire software life cylce?

According to a model for business development by Stalk, Evans and Shul-
man [1] companies need to adher to the following, very roughly sketched strategic
roadmap:

1. They need to be clear about their overall strategic goals.
2. They need to identify supporting business processes that guarantee the given

strategic goals.
3. They need to prioritize the most important sub-processes and continually

invest into them.

In the context of software development, the business processes are software
development processes. The highest priority processes to be invested into in the
case of safety goals, could be design and verification processes. Investment into a
software engineering subprocess P means to invest into the creation of empirical
evidence regarding its effectiveness f with respect to some goal G in the context
of the given environment C. G could be any one of the afore mentioned goals
quality, cost, or time.

Thus, the challenge could be phrased as identifying the following function:

G == f(P, C), (1)

where “==” stands for an empirically based relationship.

www.manaraa.com

16 D. Rombach and F. Seelisch

As a consequence of the processes defined under 2. and the selection made
under 3., a number of software development projects with management attention
will normally be started. Note that the above question whether a software version
should be delivered quickly or whether the company should aim at minimizing
total cost along the product life cycle, is not answered by the above generic
roadmap. From an IT perspective, this decision has implications for software
attributes such as adaptability and sustainability: The former strategy will in
general lead to a higher adaptability, whereas the latter naturally leads to more
sustainable software solutions.

3 Practice of Software Engineering

3.1 Problems

Today’s software engineering practice is mainly characterized by the following
two phenomena.

Schedule and Budget Overrun: Taking a closer look at software development
projects in industrial settings reveals that schedule and budget overrun is not at
all uncommon. In some projects, rates of schedule overrun of up to 150% have
been witnessed.

Safety Criticality: Besides these mere management obstacles, accidents with
sometimes dramatic consequences are a much more serious problem. Generally
speaking, here, software failures imply safety-critical situations while handling
products with embedded software, e.g., cars, trains, or airplanes. Whenever se-
rious safety problems had been detected, OEMs had to recall their products,
which typically results in a great loss of assets both economically and in terms
of company reputation and product image.

3.2 Reasons for Current Problems

Non-Compliance with Best-Practice Principles of Software Develop-
ment such as:

– encapsulation,
– information hiding,
– proven architectural patterns,
– traceability, e.g., diversion of documentation versus code over time.

The year 2000 problem (2YK) is a prominent example of poor encapsulation and
information hiding. Generally speaking, information hiding will lead to small
interfaces between program modules. This does not only increase readability
and manageability of code but also enables a potentially higher reuse of these
modules, most likely at a lower cost.

Non-Compliance with Best Practice Principles of Process Design such
as:

– review and inspection techniques for an earlier defect detection; see [2] and
Sect. 5.2,

www.manaraa.com

Formalisms in Software Engineering: Myths Versus Empirical Facts 17

– best practice process patterns,
– best practice process design tools, e.g., Waterfall or V-Model.

Non-Existence of Credible Evidence Regarding the Effects of Methods
and Tools, i.e.,

– missing empirical facts,
– missing context information,
– missing certainty information.

In most problematic software development projects, teams will have to deal with
a combination of both kinds of non-compliance, and will additionally suffer from
missing context information, or empirical facts.

Figure 1 refines formula (1) given in Sect. 2.2. It illustrates how the precision of
the prediction of project development time T for a process model P may depend
on context C: Without any context knowledge, prediction across projects may
be off by as much as 150%; see [3]. By taking into consideration parameters such
as size of the system to be developed and experience of the developers, one can
reduce the variance significantly; in many cases to a single-digit variance.

3.3 Future Trends and Challenges

The outlined current situation is not likely to improve by itself. Actually, there
are some trends which will most probably aggravate the setting.

Embedded Systems and Increasing Complexity: More and more software
is being embedded in life-supporting systems, e.g., medical devices used in oper-
ation theatres. Software is key to realizing new functions without including too
many additional hardware components. Thereby, systems are becoming more
and more complex. We have begun to build highly integrated systems of sys-
tems in which the same piece of software implements more than just one system
function.

Fig. 1. Relationship between Context Understanding and Predictive Capability

www.manaraa.com

18 D. Rombach and F. Seelisch

Cross-Disciplinary Systems: Software systems find their way into domains
that have previously been dominated by classically engineered solutions. Here,
classical disciplines and software engineering already begin to form new hybrid
disciplines for which only few skilled engineers are available.

Ubiquitious Computing and Ambient Intelligence: With ubiquitious com-
puting and ambient technologies we witness a miniaturization combined with a
remarkable multiplication of new, spontaneously connecting components. These
concepts drive the development of highly flexible, service oriented software ar-
chitectures which ensure high degrees of robustness.

Loss of Direct Control: Ubiquitious Computing and Ambient Intelligence will
also push the development of globally interconnected information systems, and
systems with autonomous control that are able to spontaneously establish net-
works and reorganize themselves. The human user will thus no longer be able to
directly control these systems.

It is hard to forecast what in detail these trends are going to imply with
respect to the development of software.

Most likely, development standards will need to become more definite and
resilient, in order to ensure that software operate as specified and be safe, secure,
and trustworthy.

4 Research in Software Engineering

4.1 Computer Science and Software Engineering

Computer science is the well-established science of computers, algorithms, pro-
grams, and data structures. Just like physics, its body of knowledge, can be
characterized by facts, laws, and theories. But, whereas physics deals with nat-
ural laws of our physical world, computer science is a body of cognitive laws;
cf. [4].

Additionally, when software engineering deals with the creation of large soft-
ware artifacts, then its role is more similar to mechanical and electrical engi-
neering where the goal is to create large mechanical or electronic artifacts.

Figure 2 shows the positioning of computer science and software engineering
in the landscape of sciences.

Each science provides a kernel set of principles that gives rise to a set of
practical methods for manipulating the world in one or the other useful way. For
example, civil engineering methods including statics calculations can be applied
to build a bridge; here the kernel set of laws to do so correctly stems from
mathematics and physics.

In this sense, software engineering can be seen as the analog set of methods for
developing software, based on fundamental results from computer science. For
instance, research in computer science gave rise to functional semantics. From
that formal foundation, software engineering derived inspection techniques such
as stepwise abstraction and cleanroom development, and proved furthermore the
practicability of these methods by means of empirical studies.

www.manaraa.com

Formalisms in Software Engineering: Myths Versus Empirical Facts 19

Fig. 2. Positioning Software Engineering in the Landscape of Sciences

Software engineering needs to be based upon formal foundations, but on the
other hand, pure computer science concepts are generally not applicable in prac-
tice, e.g., due to algorithmic complexity.

4.2 Software Engineering Principles

Let’s take a look at a very general and powerful principle of computer science:
If we need to solve a hard problem, we may try to partition it into smaller sub-

problems for which we know how to solve them. The basic recursive algorithm
for this general pattern of divide and conquer is shown in Fig. 3. (Problem parti-
tion and combination of partial solutions will of course depend on the particular
problem at hand).

Divide and Conquer in Software Development Projects: We also use this
divide and conquer principle when working in software development projects: If
the software development process is large, software engineers typically try to
partition it into subprocesses with well-defined milestones.

If the task is to create a software product for performing a variety of related
business tasks, they attempt to partition the set of requirements into subsets
with small mutual overlap.

The following insights have been extracted from a series of experiments:

– In large projects with comparably low risk, e.g., due to available domain
knowledge and an experienced project team (see Fig. 1), it is best to use
process-oriented development models, like e.g. the Waterfall or V-Model.

– Is the project small but characterized by a high risk, e.g., due to miss-
ing domain knowledge and thus the necessity to apply a general approach,
software engineers should apply product-oriented models, e.g., agile devel-
opment methods.

– Large projects with high risk resulting from tight deadlines and poor domain
knowledge are best run using product-oriented models, e.g., incremental de-
velopment techniques.

www.manaraa.com

20 D. Rombach and F. Seelisch

[!t] solve problem(Problem p)
if algorithm available for(p) then

a ←− algorithm for(p)
s ←− apply algorithm(a, p)

else

{pi : i ∈ I} ←− partition of(p)
for each i ∈ I

si ←− solve problem(pi)

s ←− combine solutions({si i ∈ I})
end if

return s

Fig. 3. Divide and Conquer - Solving a Difficult Problem by Partitioning

(The fourth remaining case - small projects with low risk - are the ones that
normally pose few problems. Moreover, they are irrelevant for most real-world
settings.)

Only when the above software engineering principles will be adhered to, soft-
ware development teams will have a chance to manage software development
projects according to pre-defined budget and schedule.

4.3 Empirical Evidence

The key to success in software development projects is to define measurements
and consequently use them in order to be able to measure work progress and
detect failure or accomplishment in a rational and transparent manner.

That means that milestones in a development project need to be clearly
marked so that responsible and further involved people can determine at any
time whether they have been reached or not.

Note that having definitions and measures at one’s disposal does not auto-
matically guarantee that they be used. Inforcing their usage must be part of
the project and can often only be accomplished by organizational changes or
even changes in the working culture. This, in turn, requires top management
commitment.

4.4 Evidence Is Context-Dependent

The challenge in software engineering, as a practical standard method and tool
box for the development of complex software, is that most tasks will typically
have to deal with organizations and will have to address human requirements of
some kind. This has two concequences:

1. The methods will vary from organization to organization. Thus, software
engineering will depend on the environment in which it is being applied;
that is, it is context-sensitive; see again Fig. 1.

www.manaraa.com

Formalisms in Software Engineering: Myths Versus Empirical Facts 21

2. State of the art software engineering will change over time, as technical
progress takes place, and working culture evolves.

An important consequence of both items is that we need to clearly document
in what context C a software engineering method can be applied with what
result, that is, we need to document the nature of f in formula (1) of Sect. 2.2.
Furthermore, a mechanism for periodically revising our knowledge is required,
in order to have a valid set in place at any time.

Laying the foundations of software engineering thus means to

– state working hypotheses that specify software engineering methods and
their outcome together with the context of their application,

– make experiments, i.e., studies to gain empirical evidence, given a concrete
scenario,

– formulate facts resulting from these studies, together with their respective
context,

– abstract facts to laws by combining numerous facts with similar, if not equal,
contexts,

– verify working hypotheses, and thereby build up and continously modify a
concise theory of software engineering as a theoretical building block of
computer science.

Current problems of software engineering in pratice can be directly related to
these goals:

– Clear working hypotheses are often missing.
– There is no time for, or immediate benefit from empirical studies for the

team who undertakes it.
– Facts are often ignored, or applied in differing contexts. Moreover, facts are

often replaced by myths, that is, by unproven assumptions.
– Laws are rarely abstracted from facts. The respective contexts are sometimes

equated which will lead to false laws; cf.examples in Sect.5.1.
– Up to now, a concise, practicable theory of software engineering does not

exist.

5 Empirical Software Engineering

Let us come back to empirical evidence as the most important means to fill gaps
in the body of knowledge of software engineering, cf. Sect. 4.3. and [5]. Methods
and tools for performing empirical studies exist. Nevertheless, we still do have a
lot of myths which impact our discipline in a negative way. Section 5.2 elaborates
the example of reading-based inspections vs. testing, to demonstrate how proper
use of empirical methods can turn the myth that “testing is more effective than
reading” into a law that “in general, reading is more effective”.

Figure 4 illustrates that there is no software engineering other than empirical
software engineering: Its technical building blocks - formalism, systems, and

www.manaraa.com

22 D. Rombach and F. Seelisch

Fig. 4. Categories of Software Engineering

processes - need to be based on empiricism which rests, in turn, on computer
science and mathematical foundations.

Prominent representatives of the existing empirical tool box are:

– GQM: Goal Question Metrics support decision making in order to guide the
software development team towards the relevant measurements.

– QIP: Quality Improvement Paradigm have a strong empirical focus.
– EF: Experience Management deals with experience and hence expertise in

project teams, preferably across different domains.

The Software Engineering Lab (SEL) of NASA’s Goddard Space Flight Center
has been the first organization establishing a sound experience management
along-side a practical software development unit. They have achieved significant
and sustained improvements over the years; cf. [6]. For these accomlishments,
the SEL had been the first recipient of Carnegie Mellon’s Software Engineering
Institute’s (SEI) Software Process Achievement Award.

According to [7], today, the top institutes on empirical software engineering
research are:

– Fraunhofer IESE + CESE, Germany and USA, respectively,
– Simula Research Lab, Norway, and
– NICTA Empirical Group, Australia.

5.1 Facts Versus Myths

Today, empirical software engineering is best characterized by the following three
statements:

1. If facts are missing then this gives rise to myths.
2. Concerning software development projects, there are more facts available

than being used. Often, software engineers ignore available facts. (This, in
turn, often happens under the pressure of unrealistic project schedules.)

www.manaraa.com

Formalisms in Software Engineering: Myths Versus Empirical Facts 23

3. Besides ignored empirical facts, there exist indeed many gaps of empirical
knowledge.

Here are some examples for unproven hypotheses which give rise to myths in
empirical software engineering:

– “Changes are easier when made earlier in the software development process.”
– “Pair reviews are effective and efficient.”
– “Re-factoring replaces design for modifiability.”
– “As the cost of defect reduction increases with lag time, does this mean that

we need to focus more on inspections and reviews?”

Likewise, the following trade-offs are still unresolved and support the insis-
tence on related myths:

– global distribution of software development versus local concentration
– subcontracting versus in-house projects
– construction for reuse versus one-time construction
– large teams versus small teams (resulting in a longer development time).

We add some open research questions resulting from established laws; in the
sense of the defintion given in Sect. 4.4. We will only be able to answer those
based on new empirical evidence. (The cited laws result from the work of Boehm,
Endres, Basili, Selby, and Rombach, et al.)

– Law: The cost of defect reduction increases with lag time. Question: Does
this mean that we need to focus more on inspections and reviews, or rather
on the design of easily modifiable systems?

– Law: Formal reviews reduce cost of rework and thus total development effort.
Questions: Under what conditions do object-oriented techniques reduce devel-
opment effort? Under what conditions does commercial-off-the-shelf (COTS)
software reduce development effort?

– Question: What is the relationship between good designs and domain knowl-
edge?

– Question: Under what conditions can changes be implemented at less cost by
means of agile methods?

– Law: For software components, inspections and reviews are more effective
and efficient than testing. (As the law states, this has been proven for soft-
ware components; initially by Basili and Selby, see [8], and sustained by
many other studies.) Question: Is this also true for entire systems?

We close this paragraph by giving a concise example of an empirical study.
This example is to serve as a guideline for setting up a typical software engi-
neering experiment. It dealt with the special inspection technique reading.

5.2 Example: Reading

Reading has become a key engineering technique in the toolbox of inspection
procedures. It supports the individual analysis of any textual software document

www.manaraa.com

24 D. Rombach and F. Seelisch

that may be dealing with requirements, design, code, test plans, etc. Generally
speaking, reading enables local improvements in the software development pro-
cess, implying global effects.

The experiment [9] provided insight into the effect of different variables, such
as experience of readers and type of defects, on the reading technique. It included

– the investigation of early code reading versus testing experiments,
– the introduction of reading into NASA’s cleanroom process,
– the replication of experiments and results in other groups, and
– the transfer of the results in other industries.

The results showed that reading

– can reduce failure rates by 25%,
– finds 90% of faults before testing,
– increases productivity by 30%,
– helps to better structure code in future projects, based on learning from

reading,
– increases the predictability of project performance parameters such as cost,

and compliance with schedules.

6 Conclusions and Outlook

In the previous chapter, we argued that empirical studies are the key to filling
gaps in our knowledge of the field of software engineering. Only empirical evi-
dence can give rise to facts and new laws. Consequently, there can be no software
engineering other than empirical software engineering.

In order to address the most relevant research questions, a revision of agendas
is necessary; especially

– the research agenda,
– the practical empirical agenda, i.e., we need to plan what experiments need

to be performed in what contexts; ideally coordinated by a research network
such as the International Software Engineering Research Network (ISERN),
see [10], and

– the educational agenda.

The last item addresses the need to educate researchers for whom software
engineering is naturally build upon an empirical foundation, and for whom ex-
periments are the standard means to do research in software engineering.

Industrial organizations need to adopt long-established, well-founded engi-
neering methods for the development of safe, secure, and trustworthy software.
Concerning the project management side, they need to accept planning and
working schemes, including schedules, that have been defined by experienced
computer scientists and software engineers. Experience guarantees a bounded
variance of software development time.

Last but not least, IT sub-organizations inside non-IT companies need to be
granted a better standing, in order to function as a natural anchor for software
development projects.

www.manaraa.com

Formalisms in Software Engineering: Myths Versus Empirical Facts 25

References

1. Stalk, G., Evans, P., Shulman, L.: Competing on Capabilities: the New Rules of
Corporate Strategy. Harvard Business Review, 57–69 (1992)

2. Boehm, B., Basili, V.: Software Defect Reduction Top 10 List. Computer 34(1),
135–137 (2001)

3. The Standish Group: The Chaos Report 1994. World Wide Web (1994),
http://www.standishgroup.com/sample research/PDFpages/chaos1994.pdf

4. Broy, M., Rombach, D.: Software Engineering. Wurzeln, Stand und Perspectiven.
Informatik Spektrum 25(6), 438–451 (2002)

5. Endres, A., Rombach, D.: A Handbook of Software and Systems Engineering.
Addison-Wesley Longman, Amsterdam (2003)

6. Basili, V., Zelkowitz, M., McGarry, F., Page, J., Waligora, S., Pajerski, R.: Spe-
cial Report: SEL’s Software Process-Improvement Program. IEEE Software 12(6),
83–87 (1995)

7. Ren, J., Taylor, R.: Automatic and Versatile Publications Ranking for Research
Institutions and Scholars. Communications of the ACM 50(6), 81–85 (2007)

8. Basili, V., Selby, R.: Comparing the Effectiveness of Software Testing Strategies.
IEEE Transactions on Software Engineering 13(12), 1278–1296 (1987)

9. Basili, V., Green, S.: Software Process Evolution at the SEL. IEEE Software 11(4),
58–66 (1994)

10. ISERN: International Software Engineering Research Network. (World Wide Web),
http://isern.iese.de/network/ISERN/pub/

http://www.standishgroup.com/sample_research/PDFpages/chaos1994.pdf
http://isern.iese.de/network/ISERN/pub/

www.manaraa.com

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 26– 39, 2008.
© IFIP International Federation for Information Processing 2008

Extending GQM by Argument Structures

Łukasz Cyra and Janusz Górski

Gdańsk University of Technology, Department of Software Engineering,
Narutowicza 11/12, 80-952 Gdańsk, Poland

lukasz.cyra@eti.pg.gda.p, jango@pg.gda.pl

Abstract. Effective methods for metrics definition are of particular importance,
as measurement mechanisms are indispensable in virtually any engineering dis-
cipline. The paper describes how the well known Goal-Question-Metric (GQM)
method of systematic metrics derivation from measurement goals can be ex-
tended by applying argument structures. The proposed approach is called Goal-
Argument-Metric (GAM). The general ideas of GQM and GAM are briefly
introduced and they are followed by the comparison of the two approaches.
Next, the Trust-IT framework is described – it is used to develop argument
structures in GAM. Then a case study of application of GAM is presented. The
case study concerns derivation of metrics and direct measurements with the ob-
jective to assess effectiveness of Standards Conformity Framework (SCF),
which is currently under development. In conclusion, early experience with
GAM is presented and more information about on-going research on argument
structures is given.

Keywords: GAM, GQM, Trust-IT, Trust case, Standards Conformity Frame-
work, Measurement plan, metrics.

1 Introduction

Measurement mechanisms provide feedback that helps in evaluation of the actions
undertaken and their results. However, identifying the scope of raw data to be col-
lected and the metrics to be calculated from these data in order to achieve a particular
measurement goal is a difficult and error-prone task. Selection of appropriate metrics
which fit for the purpose and which do not generate unnecessary costs is a challenge.
Implementation of the raw data collection process (which often needs non-trivial
involvement of human effort) may be highly resource consuming. Collecting insuffi-
cient or excessive data and metrics can be frustrating and can undermine the whole
measurements initiative. Therefore, it is of primary importance that measurement
plans make evident the objectives and the scope of collected data and the resulting
metrics.

The above problems provided strong motivation for the research towards develop-
ment of effective and efficient methodologies supporting systematic metrics derivation.
An example is Goal-Question-Metric (GQM) [1, 9], which is a well known method-
ology targeted at defining measurement plans.

In this paper we propose a modification of GQM which we call Goal-Argument-
Metric (GAM). The purpose is to provide solutions to some problems arising while

www.manaraa.com

 Extending GQM by Argument Structures 27

using GQM and in particular to provide better support for the identification and mainte-
nance of the relationship between the measurement goals and the related metrics. The
basic innovation concerns applying argument structures for stepwise refinement of the
measurement goals into metrics and direct measurements and by maintaining the argu-
ments in the easily readable and accessible form with the help of our TCT tool.

The paper first introduces GQM and GAM and compares the two approaches.
Then it introduces the Trust-IT framework [3-7], which we use for expressing and
maintaining argument structures in GAM. The applicability of GAM is then illus-
trated by a case study. In this case study we refer to the problem of assessment of the
effectiveness of Standards Conformity Framework (SCF) [2, 7]. SCF, which is pres-
ently under development, is a part of Trust-IT and its objective is to support processes
of achieving and assessing compliance with standards.

In conclusion we summarise our contribution and present plans for further research.

2 GQM

The Goal-Question-Metric (GQM) methodology was originally developed by
V. Basili and D. Weiss and then significantly extended by D. Rombach. It is a practi-
cal methodology which helps in systematic derivation of measurement plans. GQM is
well documented, for a thorough description see e.g. [1, 9]. Many other sources are
also available on the Internet. The idea of GQM is graphically presented in Fig. 1.

Goal

Questions

Metrics

Direct
Measurements

Fig. 1. GQM paradigm. Defining measurement goals (abstract level) refining them into ques-
tions (operational level), deriving metrics (quantitative information) and direct measurements.

www.manaraa.com

28 Ł. Cyra and J. Górski

GQM proceeds top-down, starting with the definition of an abstract measurement
goal, which explicitly represents the measurement intent.

Then, referring to this goal, several questions are defined which brake the problem
into more manageable chunks. The questions are defined in such a way that obtaining
the answers to the questions leads to the achievement of the measurement goal. This
step is the most difficult one, as deciding about the level of abstraction of the ques-
tions is by no means a trivial task. It is easy to make the questions too abstract or too
detailed. In both cases, difficult problems related to identifying the relationship be-
tween the questions and the collected data and metrics, or the problems related to
interpreting answers to the questions in the context of the measurement goal, may
arise [9]. Therefore, a substantial experience is usually necessary before one can ef-
fectively apply GQM. This causes that the implementation of GQM requires a signifi-
cant initial effort [9].

In the next step, based on the questions metrics are defined, which provide quanti-
tative information then treated as answers to the questions. Finally, at the lowest de-
composition layer, direct measurements are defined which provide the data necessary
to calculate the metrics (see Fig. 1).

As the problem of defining ‘good’ questions is not easy and had no obvious solution,
some additional steps have been proposed with the intention to bring more precision to
GQM. For instance, templates for defining the measurement goal have been introduced
and supported by different types of models providing additional explanatory informa-
tion. The template requires that the goal is defined in a structured way, including: the
object of study, the purpose, the quality focus, the viewpoint and the context. The
structure of such a definition is as follows:

Analyze <the object of study>
for the purpose of < the purpose>
with respect to <the quality focus>
from the viewpoint <the viewpoint>
in the context of <the context>

It has been confirmed by practical experience that the increased precision and clar-
ity in the goal definition positively influences suitability and usefulness of the meas-
ures derived with the help of GQM [1].

Additionally, GQM can be supported by models of different types with the intention
to better represent the domain knowledge. It has been suggested that descriptive, evalua-
tion, and predictive models are applied to help in ‘grounding’ the abstract attributes,
defining relationships between objects of different types, and making predictions.

GQM has evolved in time into its model-based variant, which explicitly considers
models of processes and products. However, the basic idea is still the same: to derive
metrics from goals using the three-step top-down procedure inspired by Fig. 1.

3 GAM

Following the main idea of GQM, GAM is a goal-oriented methodology for defin-
ing measurement plans. It differs, however, in the way the metrics and direct data meas-
urements are derived from the goals. Instead of using partial solutions like templates

www.manaraa.com

 Extending GQM by Argument Structures 29

Claims and
Sub-claims

Assertions

Metrics

Direct
Measurements

Fig. 2. GAM paradigm. Deriving direct measurements from goals by defining claims represent-
ing measurement goals, refining them into several levels of sub-claims, which can be finally
argued using assertions referring to metrics.

and models, GAM provides seamless way of increasing precision in the whole process of
metrics derivation.

In GAM, the goals and sub-goals are represented as claims and then the analysis
focuses on identifying which data and which properties of the data (further sub-goals)
are needed to demonstrate these claims.

The starting point is a claim postulating that the overall measurement goal has been
achieved. Then the claim is justified by giving an argument which supports the claim.
The argument can refer to other claims (about certain postulated properties) represent-
ing more manageable components of the problem. The inference rule used in the
argument is stated explicitly showing the assumed argumentation strategy. If this rule
is not self evident, another argument may be needed to demonstrate the validity of the
inference rule. Such an argument can refer to the context of the goal (for instance, to
argue the completeness of the evidence considered in the inference rule).

The procedure of decomposing claims into sub-claims is then repeated iteratively
until it is possible to argue the leaf claims by directly referring to values of certain
metrics. In such cases, the claims are supported by assertions on prospective values of
such metrics (i.e. the assertions about metrics), as shown in Fig. 2.

www.manaraa.com

30 Ł. Cyra and J. Górski

In the next step, the assertions are used to build a list of metrics, which is usually a
trivial task. Finally, direct measurements are derived from the metrics to define the
scope of raw data to be collected.

From the argument structure which links the data and metrics with the measure-
ment objective, it is straightforward to implement the bottom-up process that gathers
the raw data (by means of direct measurements) and aggregates them into metrics. If
the obtained values meet the criteria given by the assertions kept in the argument
structure, the whole argument tree explicitly demonstrates that the initial goals have
been met.

Fig. 2 illustrates the GAM approach in a graphical form.

4 Comparison of the Approaches

Considering the purpose and the general approach (top-down derivation and bot-
tom-up interpretation) GQM and GAM look the same. The differences relate to the
way of defining and maintaining the relationship between the measurement goals and
the metrics.

The topmost claim in GAM is a direct counterpart of the measurement goal in
GQM. Then, the sub-claims of GAM can be considered as answers to the questions in
GQM. So it seems that both structures are still similar having counterparts of their
elements: GQM is structured into layers of questions whereas GAM is structured into
layers of claims with the strict correspondence between the two structures. However,
this makes a significant difference, because it is easy (and natural) to link the adjacent
claim levels by means of explicit arguments while it is not equally easy to identify
and represent the relationship between the adjacent levels of questions. To demon-
strate this difference let us consider the example represented in Fig. 3.

The example presents a refinement of the measurement goal which is to assess the
support provided by a tool X. In case of GQM, a set of questions is defined with the
intention to cover all the aspects related to analysis of the support provided by tool X.
Identification of such questions is not an easy task and the analyst has to constantly
control the scope of the analysis. By contrast, in case of GAM the focus is on finding an
argumentation strategy which demonstrates the adequate support offered by tool X. In
the example, the strategy is by considering different application scenarios for X. Once
the strategy has been chosen, the refinement into sub-claims is a natural consequence.

In GQM, choosing an appropriate level of abstraction for the questions is (accord-
ing to [9]) a difficult task and a substantial experience in application of the method is
needed. It is possible to use more than one level of questions to make the definition of
“proper” questions easier. The relationship between the adjacent levels of questions is
not explicit, which increases the difficulty in using the method. Some approaches to
deal with this difficulty have been proposed, for instance, the interpretation models of
different types [1].

GAM admits multiple levels of claims and does not restrict the user in this respect.
At each level, the problem is broken into more manageable sub-problems and
the relationship between the adjacent levels is explicitly established by giving the

www.manaraa.com

 Extending GQM by Argument Structures 31

GAM

GQM

Analyse the
support provided

by tool X

Tool X provides
adequate
support

How does the
application of

tool X influence
efficiency?

How do the users
assess tool X?

How does the
support provided by

tool X differ
depending on the

application scenario?

Tool X provides
adequate support

because it adequately
supports users in

each of the chosen
application scenarios.

Tool X provides
adequate support

in scenario A

Tool X provides
adequate support

in scenario B

Fig. 3. Comparison of GQM and GAM. Defining a set of questions on the basis of the meas-
urement goal and a set of sub-claims demonstrating the root claim.

corresponding argument. The subsequent abstraction layers result naturally from the
task of justifying the higher level claims by referring to the lower level ones. In order to
create sound warrants for the arguments, the user of GAM is usually forced to refer to
the information that is represented in the models foreseen in GQM, however, in this
case it is simply a part of the argument development process and the scope of this in-
formation is easily controlled.

In our assessment, the most significant advantage of GAM is the introduction of
argument strategies and warrants, which support the arguments. Considering what is
necessary to justify a claim, finding an appropriate argumentation strategy and
documenting those decisions provides for focusing the scope of the analysis and
traceability of the results. Arguments make it evident whether the sub-components are
necessary to support the claim and whether the decomposition is complete. Therefore,
the questions like: ‘Is it a complete set of questions which must be taken into ac-
count?’ or ‘Do I really need this question to support the goal?’ do not appear in GAM.

www.manaraa.com

32 Ł. Cyra and J. Górski

Both methods are supported by advanced tools. For instance, in [8] a tool support-
ing GQM has been described. GAM is fully supported by the TCT tool [10] which is
part of the Trust-IT framework. This framework is described in more detail in the
subsequent sections.

5 Trust Cases

Development of arguments in GAM follows the approach defined in the Trust-IT
framework. A part of the Trust-IT framework is the trust case language which pro-
vides means of expressing arguments [3, 4, 5, 7]. Similar languages have been used in
the safety critical systems domain to express ‘safety cases’ – arguments justifying that
a given system is adequately safe while considered in its target context. Trust cases
differ from safety cases in several respects, for instance they can address broader
(practically unlimited) scope of properties and do not have any particular restrictions
on their structure and contents. We have already applied trust cases to analyse and
justify different properties, including safety, security, privacy and others. Another
interesting area of application of trust cases is assessing and demonstrating the com-
pliance with standards, which we are presently investigating.

In GAM we represent argument structures as trust cases. Flexibility of the lan-
guage and legibility of the arguments are two important factors which influenced this
decision. Additional advantage is that trust cases are supported by an efficient Inter-
net-enabled tool [10] which supports management and sharing of trust case structures.

Trust cases are composed of nodes of different types. The type of a node represents
its role in demonstrating a certain statement. The basic logical component of a trust
case is an argument composed of a claim to be justified (denoted), evidence sup-
porting the claim and an inference rule which shows how, on the basis of the evi-
dence, the claimed property is achieved.

The evidence and the claim are connected using nodes of type argument (de-
noted), which state the argumentation strategy. Apart from arguments also
counter-arguments (denoted) can be used. Instead of the argument which refers to
the evidence supporting the stated claim, counter-arguments demonstrate that the
claim is not true. They can be used to derive metrics from counter-claims in GAM.

The inference rule is represented as a node of type warrant (denoted). The war-
rant demonstrates in detail the argumentation strategy and justify why the inference
rule used is valid. Assumption nodes are also possible but they are omitted in the de-
scription as they are not used in GAM.

Finally, the evidence can be of type: claim or fact (denoted). Facts contain in-
formation which does not need additional justification (because it is obvious) or in-
formation whose validity is demonstrated in external documents. In contrary, claims
must be demonstrated by other arguments. This way (by justifying claims) a trust case
develops into a tree structure composed of many levels of abstraction. An example is
given in Fig. 4.

Facts which are based on information contained in external documents can be sup-
ported by a node of type reference (denoted). Such nodes contain information
about the location of documents (usually it is a URL).

www.manaraa.com

 Extending GQM by Argument Structures 33

Fig. 4. Trust case example. Demonstrating structured reviews effectiveness and efficiency by
showing that it is possible to detect errors of different types and that the benefits outstrip the
cost.

Additionally, anywhere in the argument tree an information node (denoted) can
be placed. Such nodes contain explanatory information which does not constitute a
part of the proper argument.

Each of the above-mentioned nodes can be represented as a link to specific part of
the trust case (if this part is to be re-used). Depending on where the link points at, it is
represented by , , , , , or .

6 Case Study: Overview of the Problem

In the case study we aimed at deriving metrics and direct measurements for the as-
sessment of the effectiveness of Standards Conformity Framework (SCF) [2, 7].

SCF itself is part of the (broader) Trust-IT framework. SCF supports application of
standards at the stages of achieving, assessing and maintaining compliance. The
framework provides mechanisms which help to gather the evidence and present it in a
legible way. The central component of SCF is a Trust Case template - a data structure
derived from a given standard. Templates also include extra-standard data sources
like guides, historical data, experts’ knowledge, results of standards analyses and so
on. All this information is kept in one electronic document. Such documents can be
further assessed by auditors and if accepted, can be reused in many standards’ com-
pliance projects. SCF is supported by an on-line tool which enables teamwork while
producing, gathering, and structuring the evidence which demonstrates the compli-
ance with a standard.

SCF has already been used in some projects and the results are promising. To pro-
vide for a more objective assessment, a research program was initiated targeted at
better understanding the benefits resulting from the framework application. As the
overall goal, the analysis of the SCF’s effectiveness was selected.

The objective was to derive metrics and direct measurements which could then be
used in experiments to gather the necessary data needed to assess and demonstrate the
effectiveness of SCF. The identified scope of direct measurements is going to be used
while planning for a series of experiments targeting at the assessment of the effective-
ness of the SCF framework.

www.manaraa.com

34 Ł. Cyra and J. Górski

Initially, we applied GQM to identify the scope of data to be gathered and the
scope of metrics to be constructed from those data. The results were, however, not
satisfactory although we had run two iterations of the GQM process to find the appro-
priate set of metrics. The major problems encountered were related to the derivation
tree complexity and the scope management.

The complexity of the GQM tree resulted from the complexity of the problem itself
(objective reason) and from the difficulties in defining the scope of data to be gath-
ered (subjective reason). The scope of possible questions to be considered and possi-
ble metrics to provide answers to those questions was particularly broad also because
we had to consider different variants. Therefore, deciding if a given question is be-
yond the scope or if the whole set of questions is complete was particularly difficult.
In addition, while planning for the data gathering experiments it was often difficult to
assess how a given data item influences the result of the measurement program.

The above difficulties led to the decision of applying argument structures to better
control the relationship between the measurement objective, the metrics and data
collection. Trust cases and the TCT supporting tool were chosen as the way to repre-
sent and maintain the argument structures.

7 Case Study: Application of GAM

To support derivation of metrics and measurements we created a trust case template
of appropriate structure (see Fig. 5). It represents the whole measurement plan and is
composed of four branches:

(1) ‘Effective support for achieving and assessing the compliance’ is the top
most claim (representing the measurement goal) which contains the whole ar-
gument structure. This claim is to be supported by the argument which justi-
fies it (not shown in Fig. 5).

(2) ‘Explanation’ contains additional information like the definitions of terms
used to describe metrics and measurements.

(3) ‘Metrics Directory’ is the list of all metrics derived from the measurement goal.
(4) ‘Direct Measurements Directory’ contains the list of all direct measurements

derived from the metrics.

In the next step, the argument structure was developed. The measurement goal was
decomposed into three claims and a warrant which describes the inference rule used.
This is presented in Fig. 6.

Fig. 5. SCF measurement plan trust case - a tree composed of the argument structure, explana-
tions, a list of metrics and a list of direct measurements

www.manaraa.com

 Extending GQM by Argument Structures 35

Fig. 6. First level of decomposition. Arguing SCF effectiveness by demonstrating possibility of
developing sound TC templates which positively influence the process of achieving the compli-
ance and increase efficiency of the assessment.

Fig. 7. Argument supporting a warrant. Arguing that SCF effectiveness can be demonstrated by
demonstrating three claims related to: development of templates, application of SCF at the
stage of achieving the compliance, and application of SCF at the stage of assessing the compli-
ance by the detailed analysis of the SCF application process.

In Fig. 6, it is argued that ‘Effective support for achieving and assessing the com-
pliance’ is provided because it is possible to create sound templates (represented by
the claim ‘TC templates development’), application of the templates positively influ-
ences the resulting level of compliance (represented by the claim ‘Achieving the com-
pliance’) and the performance of assessing the compliance is significantly improved
(represented by the claim ‘Assessing the compliance’).

The decomposition of the argument is justified by the ‘Decomposition into SCF
application stages’ warrant which is further refined in Fig. 7.

The lower warrant (shown in Fig. 7) refers to the SCF application process structure
and recalls the process diagram (through the link ‘SCF application process diagram’).
The analysis of this process (included in the body of the warrant ‘Descriptive analysis
of SCF application process’) explains why the structure shown in Fig. 6 is sufficient
to assess effectiveness of SCF.

In the same way the three claims represented in Fig. 6 were decomposed into more
refined claims and justified by more refined arguments. Each time, appropriate war-
rants were provided constraining the scope and giving the reason for decisions.

Finally, at a certain level of abstraction, to justify the higher-level claim it was
enough to directly refer to measurable properties. At that level, the decomposition
process stops. This last step is illustrated in Fig. 8.

Each leaf of the argument structure refers to a metric. The metric represents a
measurable value having a certain business meaning, which can be an aggregation of
a few measurements. In this way the method supports definition of the most suitable
metrics. Additionally, the leaves contain assertions which impose constraints on values

www.manaraa.com

36 Ł. Cyra and J. Górski

Fig. 8. Introduction of assertions in the argument structure. Demonstrating that compliance
maintenance is facilitated by SCF because the statistics show improvement in the performance,
and subjective opinions stated in questionnaires were positive.

of the metrics. An assertion states that a given metric m is in a certain subset of possible
values A as shown in (1).

mofvaluespossibleofsubsetaisA

metricaisM

whereAM ;∈
 (1)

For instance, in Fig. 8 the claim ‘Facilitating the compliance maintenance’ postulat-
ing that SCF facilitates the compliance maintenance is argued using performance statis-
tics and questionnaire results. The claim ‘Good questionnaire results’ is decomposed
further giving assessment criteria for answers to particular questions (explaining what
‘good’ means in this context). The fact ‘Good performance statistics’ is directly con-
nected with a metric. It states that dealing with a change takes less than 90% of time
needed if SCF were not used.

Fig. 8. also shows that at the same abstraction level it is possible to have claims
and facts simultaneously. This gives flexibility in structuring the argumentation tree
according to the needs.

Finally, all the claims must be refined into assertions. The number of levels of ab-
straction is dictated by the problem itself. At the bottom of the argument structure we
will find claims which are supported by assertions only. (See Fig. 9)

Fig. 9. Claim demonstrated by assertions only. Arguing high quality of TC templates by show-
ing the statistics about mistakes and presenting results of questionnaires.

In the example above, the claim ‘High quality TC templates’ demonstrates that the
templates developed according to the procedures defined by SCF are of high quality. It
is justified by the requirement that the number of mistakes reported relates to less than
2% of requirements of the standard (represented as fact ‘No more than 2% of mistakes’)
and the result of questionnaires used to assess the quality of templates generated

www.manaraa.com

 Extending GQM by Argument Structures 37

Fig. 10. Metrics directory

with the help of SCF is at least 3 in the (1,..,5) scale (this is represented by fact ‘Quality
of templates not lower than 3’).

In the next step the assertions were used to derive metrics. All the identified met-
rics were collected as facts in the ‘Metrics Directory’ branch shown in Fig. 10.

To provide for traceability in both directions (i.e. from assertions to metrics and
form metrics to assertions) under every assertion an information node is added which
contains a link to the metric used by the assertion (as in Fig. 11).

Fig. 11. Binding assertions and metrics. An assertion and a link to the metric derived from the
assertion.

Let us consider the assertion shown in Fig. 11. It refers to a metric representing the
per cent of mistakes in descriptions of requirements contained in templates. To
construct such a metric we need raw data (a direct measurement). In general, a given
metric M can be treated as a function f() of several direct measurements dmi as de-
scribed in (2).

functionaisf

tmeasuremendirectaisdm

wheredmfM

i

i);(=
 (2)

For instance, Fig. 12 gives an example metric and the related direct measurements.
The metric representing the number of mistakes in a template can be obtained us-

ing two direct measurements: one assessing the size of a template (represented as a
link to fact ‘Size of the template’) and another one, assessing the number of mistakes

www.manaraa.com

38 Ł. Cyra and J. Górski

Fig. 12. Binding metrics and measurements. A metric, links to the direct measurements derived
from the assertion and definitions of the notions needed to precisely express the metric.

in a template (represented as a link to fact ‘Number of mistakes’). Additionally, two
links to information nodes, which contain the definitions of the notions used (the defini-
tions of ‘mistake’ and ‘template size’) were added. The list of all the direct measure-
ments is located in the branch ‘Direct Measurements Directory’ of Fig. 5.

8 Summary

In the paper the GAM method of systematic derivation of metrics and measurements
from measurement goals was presented. The method was compared with GQM, one
of the most popular methods of this type. In addition, a case study of application of
GAM was described in detail, showing its most crucial aspects.

Application of GAM led to satisfactory results and removed the difficulties we
have faced while applying GQM. The method proved to be more effective while solv-
ing this particular problem. The initial investment in development of GQM tree took
about 24 hours in each of the two iterations. By contrast, application of GAM re-
quired only 10 hours1.

The authors are fully aware that a single case study is not enough to draw more
general conclusions related to comparison of the two methods. However, the results
obtained are very encouraging and GAM is ready to use together with its supporting
tool. We are planning for more case studies to provide more evidence on effectiveness
of the method.

The results presented in this paper have been achieved in the context of the broader
research program related to application of argument structures in various contexts.
Except measurement plans, trust cases have been already applied to argue safety,
security and privacy of e-health services and to support application of security stan-
dards. The method is supported by a matured, ready to use tool, which has already
been used in a few projects e.g. EU 6th Framework Integrated Project PIPS and EU 6th
Framework STREP ANGEL. The tool provides effective means of editing the argu-
mentation trees diminishing the difficulties related to maintenance, complexity and
change management.

1 It is worth mentioning however, that the GQM analysis was performed by a person without

much prior experience with the method, and the GAM method was applied by a person hav-
ing already some experience with the Trust-IT framework.

www.manaraa.com

 Extending GQM by Argument Structures 39

References

1. Briand, L.C., Differing, C., Rombach, H.D.: Practical Guidelines for Measurement-Based
Process Improvement, Software Process. Improvement and Practice, No. 4 (1996)

2. Cyra, Ł., Górski, J.: Supporting compliance with safety standards by trust case templates. In:
Proceedings of ESREL 2007 (2007)

3. Górski, J., et al.: Trust case: justifying trust in IT solution, Reliability Engineering and Sys-
tem Safety, vol. 89, pp. 33–47. Elsevier, Amsterdam (2005)

4. Górski, J.: Trust Case – a case for trustworthiness of IT infrastructures. In: Kowalik, J., Gor-
ski, J., Sachenko, A. (eds.) Cyberspace Security and Defense: Research Issues. NATO ARW
Series, pp. 125–142. Springer, Heidelberg (2005)

5. Górski, J.: Collaborative approach to trustworthiness of infrastructures. In: Proceedings of
IEEE International Conference of Technologies for Homeland Security and Safety, TEHOSS
2005, pp. 137–142 (2005)

6. Górski, J.: Trust-IT – a framework for trust cases, Workshop on Assurance Cases for
Security - The Metrics Challenge. In: DSN 2007 The 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, Edinburgh, UK, June 25 – June 28 (2007)

7. IAG, Information Assurance Group Homepage, http://iag.pg.gda.pl/iag/
8. Lavazza, L.: Providing Automated Support for the GQM Measurement Process. IEEE Soft-

ware 17(3), 56–62 (2000)
9. van Solingen, R., Berghout, E.: The Goal/Question/Metric Method: a Practical Guide for

Quality Improvement of Software Development. Cambridge University Press, Cambridge
(1999)

10. TCT User Manual, Information Assurance Group, Gdansk University of Technology (2006)

www.manaraa.com

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 40–54, 2008.
© IFIP International Federation for Information Processing 2008

On Metamodel-Based Design of Software Metrics

Erki Eessaar

Department of Informatics, Tallinn University of Technology,
Raja 15, 12618 Tallinn, Estonia
eessaar@staff.ttu.ee

Abstract. Metric values can be used in order to compare and evaluate software
entities, find defects, and predict quality. For some programming languages
there are much more known metrics than for others. It would be helpful, if one
could use existing metrics in order to find candidates for new metrics. A solu-
tion is based on an observation that it is possible to specify abstract syntax of a
language by using a metamodel. In the paper a metrics development method is
proposed that uses metamodel-based translation. In addition, a metamodel of a
language helps us to find the extent of a set of metrics in terms of that language.
That allows us to evaluate the extent of the core of a language and to detect
possible quality problems of a set of metrics. The paper contains examples of
some candidate metrics for object-relational database design, which have been
derived from existing metrics.

Keywords: Metric, Measure, Metamodel, UML, Object-relational database,
Data model, Reusability.

1 Introduction

Metrics, the values of which characterize software designs, can be used in order to com-
pare designs, find defects, and predict quality. For example, Choinzon and Ueda [1]
refer to 22 object-oriented design metrics that are presented in the research literature. In
addition, they define 18 new design metrics. There are fewer metrics that allow us to
evaluate database designs. For example, Piattini et al. [2] present three table oriented
metrics for relational databases. Piattini et al. [3] present twelve metrics that help us to
evaluate the design of an object-relational database. Muller [4] proposes to evaluate
structural cohesion of tables based on their normal forms.

Metamodeling is a well-known activity in software engineering that allows us to
specify abstract syntax of a language. Seidewitz [5] writes that a metamodel “makes
statements about what can be expressed in the valid models of a certain modeling
language.” If we use UML as a metamodeling language, then language elements and
their relationships are presented by using classes/attributes (properties) and attrib-
utes/relationships, respectively [6]. Is it possible to use metamodels in order to create
and improve metrics? McQuillan and Power [7] write that definitions of metrics
should be reusable. Researchers have used metamodels and ontologies in order to
present object-oriented design metrics [8] and database design metrics [9], respec-
tively, as precisely as possible. For example, SQL:2003 [10] is a large international
standard that specifies the database programming language SQL. An SQL:2003 on-
tology [9] is presented by using UML. The ontology resembles a metamodel. A

www.manaraa.com

 On Metamodel-Based Design of Software Metrics 41

difference with a metamodel of SQL:2003 is that the ontology follows the principle of
minimal ontological commitment [11] and therefore covers only the most important
parts of SQL:2003 instead of specifying the entire language.

Baroni et al. [12] think that an SQL:2003 ontology, which is a step towards a com-
plete SQL:2003 metamodel, helps us to prevent ambiguity in metrics specifications
and automate the collection process of metrics values.

In this paper, we propose additional means for using metamodels in the develop-
ment of metrics. We assume that metrics that belong to a set M help us to evaluate
software entities that are created by using a language L. Models, patterns, and frag-
ments of code are examples of software entities.

The first goal of the paper is to propose a metamodel-based method for creating
candidate metrics. This novel method uses a metamodel-based translation and allows
us to reuse existing metrics specifications. Such method could be used in case of any
software development language if a metamodel of the language is available.

The second goal of the paper is to propose a metamodel-based method for calculat-
ing the extent of a set of metrics M in terms of a language L. This method allows us to
find concrete numerical estimates of the size of the core of L as the designers of met-
rics see it. A small extent of M is a sign of possible quality problems of M because M
may be incomplete. For example, McQuillan and Power [7] note that existing UML
metrics deal only with a small part of all the possible UML diagram types. The exist-
ing metrics evaluation methods [3, 13, 14] do not take into account whether all the
metrics, which belong to a set of related metrics, together help us to evaluate all (or at
least most of the) parts of a software entity.

The data model, based on which a database system (DBMS) is implemented, is a
kind of abstract language [15]. In this work, we investigate two object-relational data
model approaches as the examples:

1. The underlying data model of SQL:2003 (ORSQL) [10].
2. The underlying data model of The Third Manifesto (ORTTM) [16].

We have found few metrics about ORSQL database design and no metrics about
ORTTM database design.

The third goal of the paper is to use the proposed metamodel-based methods in or-
der to evaluate the existing ORSQL database design metrics and to show how to de-
velop an ORTTM database design metric based on an ORSQL database design metric.

The rest of the paper is organized as follows. Section 2 analyzes how we can use
metamodels of languages in order to create and evaluate metrics. In Section 3, we
present examples. Firstly, we evaluate some ORSQL database design metrics in terms
of an ORSQL metamodel. Secondly, we design some candidate ORTTM database design
metrics based on a set of ORSQL database design metrics. Thirdly, we find the extent
of some sets of metrics. Finally, Section 4 summarizes the paper.

2 On Using Metamodels in the Development of Metrics

Piattini et al. [3] and IEEE Standard for a Software Quality Metrics Methodology [17]
describe frameworks of metrics development. They do not propose the reuse of existing

www.manaraa.com

42 E. Eessaar

metrics as one possible method how to find candidate metrics. A candidate metric is a
metric that has not yet been approved or rejected by experts.

We think that it is not always necessary to start development of a metric from
scratch. Instead, we could try to reuse existing metrics. The motivation of this ap-
proach is that it allows us to create quickly candidate metrics and experiment with
them in order to improve our understanding of a domain and get new ideas. In addi-
tion, candidate metrics provide a communication basis for discussions among all
groups that are involved in the development of a new set of metrics. It is possible that
a candidate metric evolves and becomes accepted and validated metric or the candi-
date metric is rejected after evaluation. The proposed approach should complement
existing methods of metrics development but not replace them. Figure 1 presents the
concepts that are used in the proposed approach and their interconnections.

Metamodel

Software entity

-created in1..*

0..*

Software metric

Data model 1..*

0..*

Language element

1..*
1

Metamodel element

1..*1

Semantic similarity

0..1

0..1

ideally, the metamodel element represents

0..*

-referenced element

0..*

references

Candidate software metric

{A and B are
from different
metamodels}

Measurement

1 0..*

1

0..*

Language

1 0..*

models abstract syntax of

Set of software metrics

0..*

0..*Translation
10..*

-source

0..*

0..*

Mapping

0..*

1

1

0..*

depends

allows us to
measure entities

is measured

uses
result

0..1

1

1

0..*

-A -B

1

0..*

Fig. 1. A domain model of the proposed approach

Each language consists of one or more language elements. It is possible to repre-
sent abstract syntax of a language by using a metamodel. A language can have differ-
ent metamodels, which are for instance created by different parties or are presented
with the help of different languages. A metamodel, a software metric, and a set of
software metrics are examples of software entities. Each software entity is created by
using one or more languages. For example, a metamodel of UML [18] consists of
UML diagrams, OCL expressions, and free-form English text. Another example is
that ORSQL metrics [9] are presented by using OCL expressions and free-form English
text. A language can have associated metrics that can be used in order to measure
properties of the software entities that are created by using this language. Each meta-
model consists of one or more metamodel elements. There could exist mappings be-
tween elements of different metamodels that allow us to create candidate metrics by

www.manaraa.com

 On Metamodel-Based Design of Software Metrics 43

using metamodel-based translation. A metric could be calculated based on values of
other metrics.

Let us assume that the metrics that belong to a set M help us to evaluate software
entities that are created by using a language L. Let us also assume that there is a lan-
guage L', the corresponding metrics of which belong to a set M'. All the methods that
are proposed in this paper require the existence of the metamodels of L and L' and
also the existence of mapping of elements of L and L' metamodels. If UML is used in
order to create these metamodels, then the elements that must participate in the map-
ping are classes. For example, a metamodel of UML [18] contains classes like
“class”, “action”, and “actor” and a metamodel of ORSQL [19] contains classes like
“data type”, “constructed data type”, and “data type constructor”. We follow the ex-
ample of Opdahl and Henderson-Sellers [20], who evaluate a language based on
classes of a metamodel and do not use a mapping between relationships and a map-
ping between attributes.

A pair of elements (that are from the different metamodels) exists in the mapping if
the constructs behind these elements have exactly the same semantics or they are
semantically quite similar. Designers of L and L' and users of both these languages
are the experts who are the best suited to decide whether the semantic similarity of the
underlying constructs of two elements is big enough in order to place a pair of these
elements into the mapping or not. Ideally, these mappings should be standardized.

The use of mapping of elements of metamodels in order to evaluate languages or
translate models is not a new idea. However, we use this approach in a new context. For
example, ontological evaluation of a language is a comparison of the concrete classes
of a language metamodel (language constructs) with the concepts of an ontology in order
to find ontological discrepancies: construct overload, construct redundancy, construct
excess, and construct deficit [20]. Opdahl and Henderson-Sellers [20] use UML meta-
model in order to perform an ontological evaluation of UML by comparing it with
Bunge–Wand–Weber (BWW) model of information systems. Researchers have proposed
metamodel-based comparison of ontologies [21]. It is also possible to compare two
languages by using their metamodels. For example, researchers have proposed meta-
model-based comparison of data models [19, 22]. The work of Levendovszky et al. [23]
is an example of study about metamodel-based model transformations from one language
to another.

2.1 New Means of Using Metamodels in Metrics Development

In this section, we present some new means of using metamodels of languages L and
L' in order to create and improve metrics that belong to the sets M and M', respec-
tively. We will present examples of the use of these means in Section 3.

1. A metamodel of L helps us to find shortcomings in the specification of individual
metrics that belong to M. We have to make sure that all the language elements that
are referenced in a specification of a metric (the set of these language elements is X)
have a corresponding element in a metamodel of L (the set of all the metamodel
elements is Y; there is a total injective function f: X→Y) and X is the same in all the
different specifications of the same metric. If these conditions are not fulfilled, then

www.manaraa.com

44 E. Eessaar

it shows us that the wording of a metric may not be precise enough. The result of this
investigation could be improved wording of the specifications of metrics or the crea-
tion of new candidate metrics.

2. It is possible to develop candidate metrics for L' (that belong to M') by translating
metrics that belong to M. This translation is based on a mapping of elements of
metamodels of languages L and L'.

3. A metamodel of L helps us to evaluate the extent of M and find the elements of L
that are not covered by M. This may lead to the creation of new candidate metrics.

The quality of the results of the use of these means depends on the quality of a
metamodel. For example, if a metric refers to a language element l (that belongs to L)
but a metamodel of L has no element that represents l, then we will erroneously con-
clude that the metric is imprecise (see the first mean) because an element of X has no
corresponding element in Y. This example stresses an importance of evaluation and
standardization of metamodels.

2.1.1 Metamodel-Based Creation of a Candidate Metric
Let us assume that we want to translate a metric m from a set M in order to use it in
case of software entities that are created by using L'. Next, we propose a method that
allows us to develop metrics by using a metamodel-based translation:

1. Extract nouns from the text of a specification of m.
2. Find all the elements of L metamodel that correspond to the nouns that are found

during step 1. It allows us to find language elements, based on which a value of m
is calculated.

3. For each element of L metamodel that is found during step 2, find a corresponding
element of L' metamodel. Discrepancies of the metamodels will cause some problems:
� If an element of L metamodel has more than one corresponding element of L'

metamodel, then it is not possible to perform automatic translation and a human
expert has to choose one corresponding element of L' metamodel.

� If at least one of the found elements (see step 2) of L metamodel does not have
a corresponding metamodel element of L' (there is a construct deficit in L'), then
it is not possible to perform automatic translation. A human expert has to inves-
tigate whether it is possible to use any metamodel element of L'. If it is not pos-
sible, then the process finishes. As you can see, the bigger are the discrepancies
between two languages, the harder it is to translate a metric.

4. In case of each element of L' metamodel (each class in case of UML) that is found
during step 3, check whether it is part of a specialization hierarchy.
� If a metamodel element e' is part of a specialization hierarchy, then a human

user has to evaluate whether it is instead possible to use some direct or indirect
supertype of e' in order to construct a metric for L'. If the use of a supertype is
reasonable, then a metrics designer has to use this supertype instead of e' in or-
der to construct a new metric. It ensures that this new metric can be used in as
many cases as possible.

5. Use the names of all the selected metamodel elements of L' (from step 3, 4) in
order to construct a candidate metric m'.
� “Initialism is an abbreviations formed from initial letters” [24]. If m has an initial-

ism, then create an initialism of m' based on m. Firstly, we have to identify a

www.manaraa.com

 On Metamodel-Based Design of Software Metrics 45

phrase or name based on which an initialism of m is created. Secondly, we have to
find the corresponding name or phrase in m'. Finally, we have to use initial letters
of words in this phrase or name in m' in order to construct an initialism to m'.

6. Validate the new candidate metric m' formally and empirically in order to accept
or reject it. The validation procedure is not the subject of this paper. However,
there are already a lot of studies about evaluation of metrics [3, 13, 14].

If a metric m is a derived metric, the value of which is calculated based on the
values of a set of metrics, then we firstly have to translate metrics that belong to this
set before we can translate m.

For instance, the proposed method could be used in order to translate metrics of
UML models [25] or ORSQL database designs to metrics that could be used in case of
Object-Process models [26] or ORTTM database design, respectively. This would allow
us to quickly find some metrics and to start their evaluation.

A poblem is that if the quality of an initial metric is low, then the quality of a
resulting metric will also be low. If an initial metric has associated tresholds of
undesirable values [1], then we cannot use them in case of a new metric, without
extensive testing. It is also possible that a new metric will become less important than
the original, because languages L and L' could pay attention to different things and
hence different parts of these languages are important to the designers. A new metric
might be about relatively unimportant part.

The existence of this method makes it possible to at least partially automate trans-
lation of metrics. It is not possible to fully automate it because sometimes a human
expert has to make decisions (see steps 3, 4, 6).

2.1.2 Metamodel-Based Calculation of the Extent of a Set of Metrics
It is possible that some elements of a language L are not taken into account by any
metric in M. The percentage of the metamodel elements that are covered by at least
one metric in M shows us the extent of M in terms of L. The extent of M (we denote it
E(M)) is a candidate metric that helps us to evaluate M in terms of completeness.
E(M) value is a percentage. The bigger the value is, the more complete is M.

More precisely, let us assume that we use UML in order to create metamodels. If
we calculate the value of E(M), then we have to take into account a mapping MA
between metrics that belong to M and classes in a metamodel of L. MA contains a
pair of a metric m and a class c, if the calculation formula of m takes into account a
language element that is presented by c.

We can calculate E(M) based on the formula (1) where:

� a is the total number of different classes of a metamodel of L, which participate in
at least one pair in MA, and their direct or indirect subclasses. We should not
count any class more than once. For example, if two classes in the mapping have
the same subclass, then we have to count this subclass only once.

� b is the total number of all classes in a metamodel of L.

E(M) =a*100/b . (1)

All the elements of a metamodel of L that do not participate in any pair in MA
represent the parts of L that are not covered by the metrics in M.

www.manaraa.com

46 E. Eessaar

We try to measure completness of a set of metrics by using this metric. We have to
use matching of metrics and metamodel elements and counting of matches and
metamodel elements in order to calculate this metric. This metric can be used within
and across projects and workgroups that deal with the development of metrics or
decide the use of particular metrics in a particular project.

Firstly, if we assume that metrics should pay attention only to the most important
elements of L, then E(M) shows us the extent of the core of L as the designers of met-
rics see it. If this core is small, then it raises a question whether L containts unnecessary
elements. If a set of metrics M has small E(M) value, then it does not necessarily mean
that this set has quality problems. Different parts of a language could contribute
differently to the overall quality of a software entity, that is created by using L.
However, a small E(M) value points to the possible quality problems of M, because M
might be incomplete and therefore additional investigation is needed.

A language could have more than one metamodel. For example, they could be
created by different parties or by using different languages. It is possible, that:

1. Different metamodels specify different sets of language elements. For instance,
CIM (Common Information Model) is a conceptual information model that
specifies different areas of information technology management. Part of CIM
Database Model [27] is a model of SQL Schema. It presents only eight classes that
correspond to the constructs that are specified in the SQL standard [10]. On the
other hand, the ORSQL metamodel [19] contains 110 classes.

2. In one metamodel a relationship between language elements is presented with the
help of an association class but in another metamodel by using an association. For
instance, Baroni et al. [12] use associations in order to model relationships
between classes Referential constraint and Column. On the other hand, the ORSQL
metamodel [22] contains association classes Referencing column and Referenced
column in order to specify these relationships.

3. In one metamodel a language element is presented with the help of an attribute but
in another metamodel by using a class. For instance, CIM Database Model [27]
contains class SqlDomain that has attribute DataType. There is no separate class
DataType in CIM Database Model. On the other hand, Data type is a separate
class in the ORSQL metamodel [22].

There could also be similar differences between different versions of the same
metamodel. Therefore, we can find different E(M) value for the same set of metrics if
we use different metamodels. It means that each E(M) value should always be
accompanied with the information about the metamodel (including its version) based
on which it is calculated. If a language has more than one set of metrics and we want
to compare these sets in terms of E(M), then we have to use the same metamodel
version in order to calculate E(M) values.

A possible negative side efect of the use of this metric is the creation of simplistic
and unuseful metrics in order to increase the value of E(M).

Empirical validation of a metric should involve case studies [3]. The next section
contains a case study about the use of E(M).

www.manaraa.com

 On Metamodel-Based Design of Software Metrics 47

3 Case Study: Object-Relational Database Design Metrics

In this section, we demonstrate and analyze the use of metamodel-based methods that
allow us to develop and analyze metrics. We introduced them in Section 2.

The concept “data model” has different meanings in different contexts. In this pa-
per a data model is an abstract, self-contained, implementation-independent definition
of elements of a set of sets {T, S, O, C} that together make up the abstract machine
with which database users interact. In this case: T is a set of data types and types of
data types; S is a set of data structures and types of data structures; O is a set of opera-
tors and types of operators; C is a set of constraints and types of constraints. This is a
revised version of the definition that is presented by Date [15] and our previous defi-
nition [19]. Relational and object-relational data model are examples of this kind of
data models. These data models are abstract languages [15] and we can use the meth-
ods that were presented in Section 2 in order to create and improve their correspond-
ing metrics.

In this section, we investigate the object-relational (OR) data model. This model
should combine the best properties of the relational data model and object-oriented pro-
gramming languages. Currently there is no common OR data model yet. The work of
Seshadri [28], 3rd- generation DBMS manifesto [29], The Third Manifesto (ORTTM) [16],
the work of Stonebraker et al. [30, 4], and SQL: 2003 (ORSQL) [10] are all examples of
different OR data model approaches. However, they have significant differences. For
example, all the approaches from the set of previously mentioned approaches support the
idea of an abstract data type system that allows designers to construct new types. How-
ever, there are different opinions about the exact nature of this system. For example, only
3rd- generation DBMS manifesto [29] and SQL: 2003 [10] propose the use of array type
constructor. On the other hand, only Stonebraker et al. [30, 4] and SQL: 2003 [10] pro-
pose the use of reference type constructors. Eessaar [22] presents metamodels of ORSQL
and ORTTM and their metamodel-based comparison.

More precisely, in this section we investigate ORSQL and ORTTM database design
metrics. Piattini et al. [3] propose twelve metrics in order to evaluate ORSQL database
designs. We denote the set of these metrics as MORSQL. We are not aware of database
design metrics, the specification of which uses ORTTM terminology and which are
created specifically for ORTTM. Therefore, a task of this section is to investigate, how
to create candidate ORTTM database design metrics.

3.1 On Evaluating the Wording of Existing ORSQL Database Design Metrics

A metamodel of a language (a data model in this case) allows us to find shortcomings
in the specifications of metrics. A metamodel, is in this case a kind of aiding tool.

A metrics designer has to check, whether all the language elements that are re-
ferred in various specifications of a metric have exactly one corresponding element in
a metamodel of the language or whether there are inconsistencies. For example, some
specifications of the metrics that belong to MORSQL refer to “complex columns”. The
ORSQL metamodel [22] does not have a class “complex column” and ORSQL specifica-
tion [10] does not refer to this concept. In addition, Piattini et al. [3] do not give exact
definition of “complex column”. Baroni et al. [9] write that a complex column has a
structured type. However, a user-defined type is a structured type or a distinct type in

www.manaraa.com

48 E. Eessaar

ORSQL. In addition, ORSQL allows us to use constructed types (multiset type, array
type, row type) as declared types of columns. Both base and viewed tables can have
columns, the declared type of which is not a predefined data type.

A metrics designer has also to check, whether all specifications of the same metric
refer to exactly the same set of metamodel elements. For example, informally, a value
of metric PCC(T) is “percentage of complex columns of a table T” [3]. Based on a
metamodel of ORSQL [22], we can see that a table is a base table, a transient table or a
derived table (these classes form a specialization hierarchy). A viewed table (view) is
a derived table. However, Piattini et al. [3] do not indicate, whether PCC(T) considers
only base tables or also viewed tables. They are both schema objects. Baroni et al. [9]
presents PCC(T) more formally by using OCL and shows that a PCC(T) value is
calculated only based on base tables.

These examples illustrate that (1) informal specifications metrics should be more
precise and (2) we need additional metrics that would take into account viewed tables,
distinct types and constructed types.

3.2 On Designing ORTTM Database Design Metrics Based on Existing Metrics

Table 1 presents mapping of some classes of the metamodels of ORSQL and ORTTM.

Table 1. Mapping of some classes of the metamodels of ORSQL and ORTTM

Class in the metamodel of ORSQL [22] Class in the metamodel of ORTTM [22]
Base table Real relvar, Relation
Typed base table -
Structured type User-defined scalar type
Base table column Relvar attribute
Predefined data type Built-in scalar type
Attribute Attribute
SQL-invoked method Read-only operator, Update operator
SQL-schema -
Referential constraint Referential constraint
Referencing column, Referenced column -

Column “Class in the metamodel of ORSQL” contains names of classes from the
ORSQL metamodel [22]. Name of a class exists in this column, if specification of at least
one metric from the set MORSQL refers to a language element that has this corresponding
class in a metamodel of ORSQL. Column “Class in the metamodel of ORTTM” contains
names of the corresponding classes in the ORTTM metamodel [22]. A pair of classes
from the metamodels of ORSQL and ORTTM exists in the mapping, if these classes repre-
sent language elements that are semantically equivalent or significantly similar.

Next, we present examples of manual resolution of construct deficit problem that
was described in step 3 of the algorithm in Section 2.1.1. The Third Manifesto argues
explicitly against pointers at the logical database level and typed tables (including
typed base tables) in the section “OO Prescriptions” [16]. Therefore, we cannot com-
pletely translate metric Table size of a table T that belongs to MORSQL.

www.manaraa.com

 On Metamodel-Based Design of Software Metrics 49

Schema Size is a metric from MORSQL. A database is a named container of database
relational variables (relvars) in ORTTM [16]. ORSQL, on the other hand, does not use
the concept “Database”. Instead it uses concepts “SQL-schema”, “Catalog” and
“Cluster”, which are all collections of objects. An object is a cluster, a catalog, a
SQL-schema, or a schema object. The ORSQL metamodel class “SQL-schema” has no
corresponding class in the ORTTM metamodel. We think that in case of ORTTM we
could instead calculate Database Size (DS) instead of Schema Size. DS is sum of the
size of every relvar in a database (a metric for estimating the size of a relvar must also
be translated from ORSQL).

Depth of relational tree of a table T DRT(T) is a metric from MORSQL that shows us
“the longest path between a table and the remaining tables in the schema database” [9].
We have created classes Referencing Column and Referenced Column in the ORSQL
metamodel in order to model associations between Base table column and Referential
constraint. Classes Referencing Column and Referenced Column are necessary in the
ORSQL metamodel because ORSQL pays attention to the order of column names in a
referential constraint specification and we need a place for the attribute ordi-
nal_position. It is possible (but not necessary) to create corresponding classes in the
ORTTM metamodel. However, these classes would not have any attributes (including
ordinal_position, because ORTTM does not pay attention to the order of attribute names
in a referential constraint specification). In addition, metrics in MORSQL do not take into
account the ordinal position and therefore we conclude that it is possible to find corre-
sponding metrics for DRT(T) in ORTTM despite the construct deficit.

3.2.1 An Example
Next, we demonstrate how to create candidate ORTTM database design metrics based on
the ORSQL metrics by using the algorithm that was introduced in Section 2.1.1. We inves-
tigate metrics NFK(T) and RD(T) that belong to the set MORSQL [3]. Baroni et al. [9]
present specifications of NFK(T) and RD(T) in the following way:

� “NFK (Number of Foreign Keys): Number of foreign keys defined in a table.

BaseTable:: NFK(): Integer= self.foreignKeyNumber()

� RD (Referential Degree): Number of foreign keys in a table divided by the number
of attributes of the same table.

BaseTable::RD(): Real= self.NFK() / (self.allColumns()
-> size())”

These specifications consist of a natural language part and are also presented by us-
ing OCL, which arguably makes them more formal and understandable. Unfortunately,
Baroni et al. [9] do not specify functions that are used in the OCL specification. We note
that tables have columns and structured types have attributes according to the ORSQL
metamodel [22]. As you can see, analysis with the help of a metamodel may help us to
improve the existing wording of metrics.

RD is an example of a metric that depends on another metric (NFK) and therefore
we have to firstly translate NFK. We also note that metric Referential Degree of a
table T (RD(T)) has different semantics in the studies of Piattini et al. [3] and Baroni
et al. [9] and it causes confusion. Piattini et al. [3] defines RD(T) metric as “as the

www.manaraa.com

50 E. Eessaar

number of foreign keys in the table T”. The corresponding metric in the work of
Baroni et al. [9] is named Number of Foreign Keys.

Steps 1, 2: Relevant classes of the ORSQL metamodel [22] are: Base table, Base table
column, Referential constrain (see Table 1). We can find them by investigating nouns
in the existing specifications of metrics.

Step 3: Table 1 presents classes of the ORTTM metamodel that correspond to some
classes of the ORSQL metamodel. Firstly, some elements of the ORSQL metamodel have
more than one corresponding element in the ORTTM metamodel. Base table has two
corresponding classes in the ORTTM metamodel – Real relational variable (Real relvar)
and Relational value (Relation). ORTTM clearly distinguishes the concepts “value” and
“variable”. A variable has at any moment one value, but it is possible to change this
value. In ORSQL, the concept “table” means “table value” as well as “table variable”.
The next definition is an example of that: “A table is a collection of rows having one or
more columns” [10]. It is an example of construct overload [20] in ORSQL because a
construct in ORSQL corresponds to several not-overlapping constructs in ORTTM. Date
and Darwen [16] write that referential constraints apply to relvars. Therefore, we decide
that the corresponding class to Base table is in this case Real relvar.

Step 4: We identified the concept “real relvar” during the step 2. Date and Darwen [16]
write: “Referential constraints are usually thought of as applying to real relvars only. In
the Manifesto, by contrast, we regard them as applying to virtual relvars as well.” Real
relvar and Virtual relvar are subclasses of Relvar in the ORTTM metamodel. Therefore,
in this case we can use class Relvar instead of class Real relvar.

Step 5: Now we can create specifications of two candidate metrics for ORTTM by replac-
ing ORSQL concepts in the specifications with ORTTM concepts. The specification con-
sists of an informal natural language specification and a specification that is written in
OCL. The level of precision of the specifications is analogous to [9].

� NRC (Number of Referential Constraints): Number of referential constraints where
a relvar is the referencing relvar.

Relvar:: NRC(): Integer=
self.referentialConstraintNumber()

� RD (Referential Degree): Number of referential constraints where a relvar is the
referencing relvar divided by the number of attributes of the same relvar.

Relvar:: RD(): Real= self.NRC() /(self.allAttributes()
-> size())

We created initialisms NRC and RD based on the names “Number of Referential
Constraints” and “Referential Degree”, respectively.

We also note that we can translate some metrics that are not intended to database de-
sign, in order to find candidate database design metrics. For example, Habela [31] pre-
sents a metamodel of an object-oriented database system. Date [15] explains that classes
in object-oriented systems correspond to scalar data types in ORTTM databases. An at-
tribute in a class corresponds to a component of a possible representation of a scalar
type. A method of a class corresponds to an operator that has been defined in an ORTTM
database. Therefore, it is possible to translate some OO design metrics [1] to candidate

www.manaraa.com

 On Metamodel-Based Design of Software Metrics 51

ORTTM database design metrics. For example, Number of Attributes (NOA) [1] becomes
to Number of components in a possible representation of a given type and Number of
Methods in a Class (NOM) becomes to Number of read-only operators, the return value
of which has a given type.

3.3 On Evaluating the Extent of Sets of Database Design Metrics

We could create a set of metrics for ORTTM by translating all the metrics in MORSQL.
We denote this set as MORTTM. In this section, we evaluate the extent of the metrics in
MORSQL and MORTTM based on the formula (1) (see Section 2.1.2).

The ORSQL metamodel contains 110 classes [19]. Table 1 refers directly to 11
classes of the metamodel. These classes have additional 20 different subclasses.
Therefore, the extent of MORSQL is: E(MORSQL)=((11+20)*100)/110=28.2%. As you
can see, more than two thirds of ORSQL constructs are not covered by these metrics.

UML [18] allows us to use packages in order to group model elements and manage
complexity. According to definition (see Section 3), a data model has four compo-
nents. Eessaar [19, 22] proposes to create four corresponding packages in order to
manage the complexity of a metamodel of a data model that is presented by using
UML: Data types, Data structures, Data operators, and Data integrity.

Ideally, each metamodel element should belong to exactly one of these packages.
However, Eessaar [19, 22] has found 3 classes of the ORSQL metamodel that cannot be
classified to any of these packages. Table 2 presents the extent of MORSQL in terms of
each of these packages. It shows us, how much metrics in MORSQL pay attention to the
different aspects of ORSQL data model.

Table 2. The extent of MORSQL in terms of the different data model components

Data model com-
ponent

Amt. of classes and their
subclasses in the map-
ping (a)

Total amt. of classes in a
package (b) [19]

E(MORSQL)
(a*100)/b

Data types 11 38 28.9%
Data structures 14 26 53.8%
Data integrity 3 16 18.8%
Data operators 3 27 11.1%

Table 2 shows us that metrics in MORSQL pay attention mostly to the structural part
of ORSQL. This is in line with the claims of the authors of metrics in MORSQL, who see
these metrics as structural metrics. The biggest advantage of OR data models is pos-
sibility to create new types and operators [15]. However, existing ORSQL metrics
should pay more attention to types and operators. We can say this because Table 1
does not refer to classes of the ORSQL metamodel that specify language elements like
constructed data types, distinct types, and regular SQL-invoked functions. Table
CHECK constraints, viewed tables, and user-defined functions / stored procedures
with no overloading are examples of mandatory SQL features [10] that are not cov-
ered by the existing metrics according to Table 1. Type constructors, domains, trig-
gers, and sequence generators are examples of optional SQL features [10] that are not
covered by the existing metrics according to Table 1. On the other hand, a metric in

www.manaraa.com

52 E. Eessaar

MORSQL takes into account typed tables and structured types that are optional SQL
features [10]. As you can see, there is not one-to-one correspondence between the
core of SQL and the existing metrics that belong to MORSQL.

Next, we calculate the extent of MORTTM based on the ORTTM metamodel in order to
evaluate MORTTM. We assume that MORTTM covers the following classes (and their
subclasses): Relvar, User-defined scalar type, Relvar attribute, Built-in scalar type,
Attribute, Read-only operator, Update operator, Referential constraint, Database.
These 9 classes have 29 subclasses. The ORTTM metamodel contains 95 classes [19].

Therefore, the extent of MORTTM is: E(MORTTM)=((9+29)*100)/95=40%. This extent
is bigger compared to the extent of MORSQL.

A possible reason could be that ORSQL violates the orthogonality principle more
than ORTTM [16, 19, 22]. Date and Darwen [16] write that the orthogonality principle
means that a deliberate attempt has been made to avoid arbitrary restrictions in com-
binations of different language constructs. For example, ORSQL permits foreign key
constraints only in base tables but ORTTM in all relvars (including virtual). Therefore,
MORTTM metrics are calculated based on bigger amount of different types of database
objects compared to MORSQL.

It could be argued that some constructs of a data model cannot be used or misused
in a way that affects the overall quality of database design and therefore correspond-
ing metrics are not needed. However, why when to develop standards and systems
that specify and allow us to create entities that are unnecessary and not very useful?
Most of the current database design metrics that are proposed by researchers are
simple counts that are not very precisely described. It rather seems that small E(M)
values point to the need to continue development of ORSQL and ORTTM metrics.

4 Conclusions

In the paper, we investigated how to use metamodels of languages in order to evaluate
and improve specifications of existing software metrics and to design candidate metrics.

We proposed a metamodel-based derivation method of candidate metrics and new
candidate metric E(M) that allows us to evaluate completeness of sets of metrics. The
metamodel-based derivation method allows us to reuse existing metrics by translating
them so that they are possibly usable in a new context. Actual usefulness of these new
candidate metrics must be found out based on careful evaluation. The evaluation pro-
cedure was not in the scope of the paper. The proposed method is not intended to
replace existing methods of metrics development but should complement them. Cur-
rently it is too early to say whether its use will become common practice.

We demonstrated the usefulness of the proposed method based on database design
metrics. The paper considered two object-relational data model approaches –
SQL:2003 (ORSQL) and The Third Manifesto (ORTTM) as the examples. The analysis
of some existing ORSQL design metrics revealed problems in the wording of them. We
demonstrated how to translate some existing ORSQL metrics in order to create candi-
date metrics for evaluating ORTTM database design. In the proposed case study the
languages (data models) are relatively similar to each other. There would be more

www.manaraa.com

 On Metamodel-Based Design of Software Metrics 53

discrepancies between metamodels if the languages are more different. It will allow us
to translate fewer metrics and will reduce possibility of automatic metric translation.

We also found that the completeness of an existing set of ORSQL metrics is small
(E(M)≈28%). These metrics together cover only small part of all possible ORSQL
constructs. Closer investigation showed that these metrics do not pay enough attention
to different kinds of data types and routines and therefore design of new metrics must
continue.

Future work will include development of more ORTTM database design metrics and
further evaluation of E(M).

References

1. Choinzon, M., Ueda, Y.: Design Defects in Object Oriented Designs Using Design Met-
rics. In: 7th Joint Conference on Knowledge-Based Software Engineering, pp. 61–72. IOS
Press, Amsterdam (2006)

2. Piattini, M., Calero, C., Genero, M.: Table Oriented Metrics for Relational Databases.
Software Quality Journal 9(2) (June 2001)

3. Piattini, M., Calero, C., Sahraoui, H., Lounis, H.: Object-Relational Database Metrics.
L’Object (March 2001)

4. Muller, R.J.: Database Design for Smarties. Morgan Kaufmann, San Francisco (1999)
5. Seidewitz, E.: What models mean. IEEE Software 20(5), 26–31 (2003)
6. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Applications

with Patterns, Models, Frameworks, and Tools. John Wiley & Sons, USA (2004)
7. McQuillan, J.A., Power, J.F.: On the application of software metrics to UML models. In:

Model Size Metrics Workshop of the ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems (2006)

8. Reißing, R.: Towards a Model for Object-Oriented Design Measurement. In: 5th Inter-
national ECOOP Workshop on Quantitative Approaches in Object-Oriented Software
Engineering, pp. 71–84 (2001)

9. Baroni, A.L., Calero, C., Piattini, M., Abreu, F.B.: A Formal Definition for Object-
Relational Database Metrics. In: 7th International Conference on Enterprise Information
Systems (2005)

10. Melton, J.: ISO/IEC 9075-2:2003 (E) Information technology — Database languages —
SQL — Part 2: Foundation (SQL/Foundation) (August 2003)

11. Gruber, T.R.: Towards principles for the design of ontologies used for knowledge sharing.
International Journal of Human Computer Studies 43(5/6), 907–928 (1995)

12. Baroni, A.L., Abreu, F.B., Calero, C.: Finding Where to Apply Object-Relational Database
Schema Refactorings: An Ontology-Guided Approach. In: X Jornadas Sobre Inginiería del
Software y Bases de Datos (2005)

13. Schneidewind, N.F.: Methodology for Validating Software Metrics. IEEE Trans. Softw.
Eng. 18(5), 410–422 (1992)

14. Kaner, C., Bond, P.: Software Engineering Metrics: What Do They Measure and How Do
We Know? In: 10th International Software Metrics Symposium (2004)

15. Date, C.J.: An Introduction to Database Systems, 8th edn. Pearson/Addison-Wesley, Bos-
ton (2003)

16. Date, C.J., Darwen, H.: Types and the Relational Model. The Third Manifesto, 3rd edn.
Addison-Wesley, Reading (2006)

www.manaraa.com

54 E. Eessaar

17. IEEE Std. 1061-1998, Standard for a Software Quality Metrics Methodology. IEEE Stan-
dards Dept. (1998)

18. OMG UML 2.0 Superstructure Specification, formal/05-07-04
19. Eessaar, E.: On Specification and Evaluation of Object-Relational Data Models. WSEAS

Transactions on Computer Research 2(2), 163–170 (2007)
20. Opdahl, A.L., Henderson-Sellers, B.: Ontological Evaluation of the UML Using the

Bunge–Wand–Weber Model. Software and Systems Modeling 1(1), 43–67 (2002)
21. Davies, I., Green, P., Milton, S., Rosemann, M.: Using Meta Models for the Comparison

of Ontologies. In: Evaluation of Modeling Methods in Systems Analysis and Design
Workshop (2003)

22. Eessaar, E.: Relational and Object-Relational Database Management Systems as Platforms
for Managing Software Engineering Artifacts. Ph.D. Thesis. Tallinn University of Tech-
nology, Estonia (2006)

23. Levendovszky, T., Karsai, G., Maroti, M., Ledeczi, A., Charaf, H.: Model Reuse with
Metamodel-Based Transformations. In: Gacek, C. (ed.) ICSR 2002. LNCS, vol. 2319, pp.
166–178. Springer, Heidelberg (2002)

24. Merriam-Webster, Inc. Merriam-webster’s online dictionary, http://www.m-w.com/
25. Kim, H., Boldyreff, C.: Developing software metrics applicable to UML Models. In: 6th

International Workshop on Quantitative Approaches in Object–Oriented Software Engi-
neering, pp. 147–153 (2002)

26. Dori, D., Reinhartz-Berger, I.: An OPM-Based Metamodel of System Development Proc-
ess. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS,
vol. 2813, pp. 105–117. Springer, Heidelberg (2003)

27. DMTF Common Information Model (CIM) Standards. CIM Schema Ver. 2.15. Database
specification

28. Seshadri, P.: Enhanced abstract data types in object-relational databases. The VLDB Jour-
nal 7(3), 130–140 (1998)

29. Stonebraker, M., Rowe, L.A., Lindsay, B., Gray, J., Carey, M., Brodie, M., Bernstein, P.,
Beech, D.: Third-generation database system manifesto. Computer Standards & Inter-
faces 13(1–3), 41–54 (1991)

30. Stonebraker, M., Brown, P., Moore, D.: Object-Relational DBMSs: Tracking the Next
Great Wave, 2nd edn. Morgan Kaufmann, San Francisco (1999)

31. Habela, P.: Metamodel for Object-Oriented Database Management Systems. PhD Thesis.
Polish Academy of Sciences, Warsaw, Poland (2002)

www.manaraa.com

Automatic Transactions Identification
in Use Cases�

Mirosław Ochodek and Jerzy Nawrocki

Poznań University of Technology, Institute of Computing Science,
ul. Piotrowo 3A, 60-965 Poznań, Poland

{Miroslaw.Ochodek,Jerzy.Nawrocki}@cs.put.poznan.pl

Abstract. Since the early 90’s of the previous century, use cases have
became informal industry standard for presenting functional require-
ments. The rapid popularity growth stimulated many different
approaches for their presentation and writing styles. Unfortunately, this
variability makes automatic processing of use cases very difficult. This
problem might be mitigated by the use of transaction concept, which
is defined as an atomic part of the use case scenario. In this paper we
present approach to the automatic transaction discovery in the textual
use cases, through the NLP analysis. The proposed solution was imple-
mented as a prototype tool UCTD and preliminarily verified in a case
study.

Keywords: Use cases, Use-cases transactions, Use Case Points, Require-
ments engineering, Effort estimation, Natural language processing.

1 Introduction

In the field of requirements specification there are two extremes. One is a for-
mal approach based on sound mathematical background. People interested in
this approach can use such notations as VDM, Z [17], Statecharts [16], Petri
Nets [24] and many others. The problem is that those notations lead to quite
long specifications (sometimes their size is comparable to code size) and prov-
ing correctness of commercial-like programs can be quite time consuming (an
interesting case study has been described by Wolfgang Reif [23,13]). But what
is more important, mathematically sound specifications usually are unreadable
for a typical end-user.

Another extreme is completely unformal approach based on the oral com-
munication. The best example of that approach are user stories, which are one
of the main practices of Extreme Programming [6]. Here the main weakness is
dependence on human memory. In case of difficult requirements with many com-
peting approaches, each one having indirect impact, relying on human memory
can be dangerous.
� This research has been financially supported by the Ministry of Science and Higher

Education grant N516 001 31/0269.

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 55–68, 2008.
c© IFIP International Federation for Information Processing 2008

www.manaraa.com

56 M. Ochodek and J. Nawrocki

Somewhere in between there are use cases. They have been introduced by Ivar
Jacobson [19] and further developed by Cockburn [9] and others [1]. A typical
use case describes a user-valued transaction in a sequence of steps, and each step
is expressed in a natural language (if needed, one can extend a given step with
an alternative behaviour). That makes use cases readable for end-users.

Use cases can be used not only for the system’s behaviour specification, but
also for the effort estimation. Kerner proposed so-called Use Case Points method
(UCP) [20] resembling Function Points [2]. In the UCP size of each use case
depends on the number of transactions embedded in it. Unfortunately, the notion
of use-case transaction is vague. Due to this, development of sizing tools for use-
cases is almost impossible.

In the paper the term of use-case transaction is formalised and a method of
automatic identification of transactions in use cases is presented. Transaction
identification can be used as a bases for effort estimation and for automatic
use-case review.

The paper is organised as follows. In the next section, the rationale for trans-
action counting is presented as well as existing work concerning their automatic
discovery. In Section 4, a formal definition of the use case transaction is intro-
duced, together with an approach for their automatic extraction from the textual
use case. The case study for preliminary verification of the model and method
is presented in Section 5. Some remarks and lessons learned concerning use case
writing style for transaction identification, are presented in Section 6.

2 Use-Case Transactions Counting Problem

The lack of formal standards for the use cases presentation causes many problems
with the developing generic and format independent tools and methods. Thus, it
is very important to find a common denominator, which might be derived from
the use cases despite the differences in the presentation format.

The use case transaction is a decent example of such a concept. It is strictly
connected with the use case logic, while dependancy on its notation is limited.
It has been introduced by Ivar Jacobson [18]. According to the Jacobson each
step should be a transaction, with the four types of phrases included:

– the main actor sends request and data to the system,
– the system validates given data,
– the system performs internal state change operations,
– the system responds to the actor with the operation result.

Transactions are mainly used as a complexity measurementwithin the Use Case
Points (UCP) method [20]. The UCP is an accepted software size metric [4], which
might be also used for the effort estimation. Each use case is classified into one
complexity class depending on the number of transactions. Use case with three or
less transactions is considered as a simple, from four to seven as an average and
finally if it has more then seven transactions, it is classified as a complex one. The
next step of the UCP method, is a computation of the UUCW (Unadjusted Use

www.manaraa.com

Automatic Transactions Identification in Use Cases 57

Case Weight), which is the sum of simple use cases set cardinality multiplied by 5,
cardinality of average set multiplied by 10 and cardinality of complex set by 15.

A transition between size and effort is done by multiplying the UCP method
output by the Productivity Factor (PF), which defines how many man hours
are required to cover one Use Case Point. The easiest way to obtain the PF
within the certain organisation is to compute it from the historical data or
use values presented in the literature (according to authors writing about the
UCP, PF varies from 20 to 36 h/UCP [20,27]). The Productivity Factor makes
UCP method easy to calibrate, as long as historical data comes from the similar
projects and rules used for the counting transactions number and assessing other
method components does not differ significantly between the considered projects
(experts should be consistent in their approach to the transactions counting).

According to some authors [5,8,25] use case transactions might be counted
as the number of steps in the use case scenarios (main and alternative). This
approach is acceptable as long as the use cases are written according to the
Jacobson’s one step - one transaction rule. In other case relying on counting
steps as transactions, might trigger overestimation problems.

Alistair Cockburn in [9] presented relevant example that the same scenario
might be easily written with the different number of steps. Each of the four
presented use cases consists of the one transaction but the number of steps
varies from the one to five (Cockburn’s example, is presented in the figure 1). If
we follow the UCP classification rules for the use cases complexity classification,
two presented examples would be classified as a simple and the other two as an
average.

Fig. 1. The example [9] of four versions of the one-transaction use case with scenario
varying from 1 to 5 steps. Relying on scenarios length (measured in steps) while count-
ing transactions number may lead to corrupted results.

www.manaraa.com

58 M. Ochodek and J. Nawrocki

In the case study presented in the section 5, the UUCW counted for thirty use
cases based on the number of steps is 2 times higher then mean UUCW value
counted for all experts based on their transactions number assessment.

The important problem concerning transactions identification appears as a
difference in formats and styles of writing use cases, which involves other views
on the actors actions. The list of some use case structure problems, in the trans-
action discovery context, is presented in the section 6.

3 Definition of Use-Case Transaction

We have already stated that measuring use case complexity based on the transac-
tions number, seems to be better idea then counting steps in scenarios. However,
the notion of transaction should be formally defined in order to provide clear
rules for their automatic identification.

The approach to transaction identification for use cases written in Japanese
was described by Kusumoto et al. [22]. Authors proposed a system (U-EST),
which processed requirements stored in the XMI format and estimating effort
based on the UCP method. It is stated that morphological analysis for all state-
ment was conducted in order to find transactions. Each transaction was con-
cerned as a set of subject and predicate that relates to actor’s operation and
system response. Unfortunately, it is not clear for us, whether authors perceived
the pair of actor and system phrases as a transaction or each of them as separate
one. The U-EST system was evaluated using data provided by experienced en-
gineers from the Hitachi company. In the case study classification given by the
system was compared only with one specialist (authors did not provide exact
number of identified transactions, but the final use case classification with the
UCP method). The assumption was made that use case grammar is "absurdly
simple". Based on our experience, it seems that use cases language, especially
in the commerce requirements specifications, is not always as simple as it is
suggested in the literature.

Another redefinition of the use case transaction was presented by Sergey
Diev [11]. The transaction idea remains similar to the Jacobson’s, but it is
more general. Author defines transaction as the smallest unit of activity that
is meaningful from the actor’s point of view. What is more important, use case
transaction should be self-contained and leaves the business of the application
in a consistent state.

3.1 Proposed Transaction Model

We would like to propose a transaction model which is based on the Ivar Jacob-
son’s transaction definition [18].

We enumerates four types of actions, which are relevant from the use case
transaction point of view:

– actor’s request action (U),
– system data validation action (SV),

www.manaraa.com

Automatic Transactions Identification in Use Cases 59

– system expletive actions (e.g. system internal state change action), which
are neither validation nor confirmation actions (SE),

– system response action (SR).

We perceive transaction as an atomic sequence of activities (actions) performed
by actor and system, which is performed entirely or not at all. Each action
belongs to one of the four sets U, SR, SV, SE.

Definition 1. The certain transaction is a shortest sequence of actor’s and
system actions, which starts from the actor’s request (U) and finishes with the
system response (SR). The system validation (SV) and system expletive (SE)
actions may optionally occur within the starting and ending action. The pattern
for the certain transaction written as a regular expression:

Tcertain = U+ [SV SE]∗ SR+

Where

– U - actor’s request action,
– SV - system data validation action,
– SE - system expletive action,
– SR - system response action.

Definition 2. We mark transaction as an uncertain (but still as transaction) if
it starts from the actor’s action (U), but it lacks corresponding system response
phrase (SR). In this case system expletive action (SE) might be treated as a
transaction closure. It is possible only if the next action is the actor’s action (U)
or the end of scenario. Thus, uncertain transaction might be defined as:

Tuncertain = (U+ SV∗ SE+) (?![SV SR])

Where

– U - actor’s request action,
– SV - system data validation action,
– SE - system expletive action,
– SR - system response action.

Alternative scenarios (extensions) are also included in the transaction discovery
process. The role of extensions scenario depends on the type of corresponding
action in the main scenario. Extensions which are regarding system actions, are
part of the transaction started in the main scenario. If the extension is trig-
gered by the U-type action, the user decision point is reached. This means that
main scenario is being forked into two or more alternative paths. To remark deci-
sion point, expression in assertion form might be added before action, in order to
express actor’s intention (e.g. User wants to add article). If the corresponding ex-
tension also starts with the assertion (e.g. User wants to add news), the alterna-
tive execution paths are clearly defined. If the actions in such alternative scenario
matches patterns presented in definitions 1 or 2, a new transaction is marked.

www.manaraa.com

60 M. Ochodek and J. Nawrocki

Presented certain transaction definition should satisfy both conditions defined
by Sergey Diev [11]. The actor makes a request (U), which implies that action is
meaningful from his point of view. System responds to the actor’s request (SR),
which means that the business of the application is left in a consistent state.

Based on the transaction definition, we would like to propose a graphical
representation of transaction, which is the Transaction Tree. The root element
represents a transaction itself. The next two layers states for the types of actions,
which are named here as parts. Each part groups corresponding types of phrases.
The action is represented in the tree as:

– <Actor> is the actor’s name with distinction to actor(real) and system,
– <PredicateSyn> represents set of action’s predicate synonyms (for example

show, present etc. would be grouped together),
– <Object> is the object phrase.

The Transaction Tree might also include prolog (eg. Use case starts when actor
enters the page; System displays welcome page etc.) or epilog phrases (Use case
ends etc).

4 Transaction Identification with NLP Tools

We use NLP (Natural Language Processing) techniques to extract the Trans-
action Tree and mark transactions occurrence in the use case text. The most
important stage of this process is detection of actor’s and system actions.

Transactions Discovery Process. The transactions identification rules was
developed based on thirty one different use cases coming from the literature [1,9]

Fig. 2. The UCTD application processing pipeline. Textual use case is split into title,
main scenario and extensions documents. Actors names are extracted into the GATE
Gazetteer form. The main scenario and extensions part are processed in order to find
actions. Finally, the Transaction Tagger performs construction of the Transaction Tree.

www.manaraa.com

Automatic Transactions Identification in Use Cases 61

Fig. 3. Example of the use case text with annotations. The most important annota-
tions, like actor subject, predicate, object phrase, validation verb and response verb are
marked. According to the defined rules, validations and response phrases are extracted
from the text. Finally, each phrase is classified into the part U , SV , SE or SR.

Fig. 4. The UCTD application screen (HTML report). On the left side use case is
presented (chosen transaction is highlighted). Transaction Tree is presented on the
right side.

and various Internet sources. The variability of styles helped us to develop solu-
tion, which is flexible enough to handle different approaches for writing use cases.

The proposed idea was implemented as a prototype tool UCTD. It is capable
of analysing use cases written in English. The application was developed based on
the GATE Framework [10]. The grammatical structure analysis was performed
with the use of Stanford Parser [21]. The use case processing chain is presented
in the figure 2 and consists of the following steps:

www.manaraa.com

62 M. Ochodek and J. Nawrocki

1. Preprocessing phase, which involves use case structure verification (see 4),
actors extraction into the GATE Gazetteer form (lists of words which are
looked up in the text). Use case is split into title, main scenario and exten-
sions documents. Each part is further tokenized and sentences are annotated.

2. POS tagger is used to annotate parts of speech.
3. English Grammar parser is used to annotate parts of sentence (subjects,

predicates, objects etc.).
4. Important words and phrases are being looked up in the scenarios text (ac-

tors, validations, response phrases etc.).
5. Actor and system actions are marked with the use of JAPE grammars. Ad-

ditional postprocessing is done to increase accuracy. The example of use case
text with annotations is presented in the figure 3.

6. Transaction Tree is built based on the actor’s and system actions sequences.
Actions predicates are converted into the sets of predicates synonyms using
the WordNet dictionary [15] or with the use of explicitly defined lists of syn-
onyms. The example of the Transaction Tree, extracted from the annotated
text, is presented in the figure 4 (the UCTD application screen).

5 Transaction Identification – A Case Study

In order to verify proposed approach for transaction identification we conducted
case study, based on thirty use cases coming from the industry project, developed
for the e-government sector.

The specification was tagged individually by six experts and UCTD tool. We
wished to measure system accuracy as well as investigate how the experts deal
with the transaction detection problem in the specification coming from the
software industry (The case study was preceded by the warmup phase with the
assessment of four use cases taken from the literature examples). The detailed
results of the case study are presented in the table 1.

5.1 Comparison of System and Experts Results

Although, use cases structure were correct, we perceived few scenarios as am-
biguous from the transactions identification point of view. Thus, we assumed
that each expert presents his own approach to transaction counting and neither
of their assessments could be accepted as the "standard". In order to measure
discrepancy between system and experts opinions, error analysis was performed
(concerning differences in number of transactions counted by the participants for
each use case). The root mean square deviation (RMSD) matrix, dendrogram
(RMSD) and Spearman’s rank correlation coefficients matrix are presented in
the figure 5. According to the RMSD analysis, experts clearly differs in their deci-
sions. However, three clusters can be distinguished. The group with the greatest
cardinality, couples four experts (2, 4, 5, 6) and the UCTD system. The rest of
experts (3, 7) differs from themselves as much as from the rest of participants.
In this case discrepancy between the UCTD system was not greater then differ-
ence between the experts. The average time required for transaction counting

www.manaraa.com

Automatic Transactions Identification in Use Cases 63

Table 1. Case study results summary. All use cases are presented with the number of
steps (in the main scenario and extensions) and transactions counted by the system
and experts.

Use Case ID No. Steps (All) UCTD(1) 2 3 4 5 6 7

WF1101 14 3 3 3 4 2 3 4
WF1102 14 2 5 4 3 2 3 4
WF1104 5 1 1 1 1 1 1 3
WF1105 7 2 2 2 2 2 1 3
WF1106 6 1 1 3 1 2 1 1
WF1107 4 1 1 1 1 1 1 2
WF1108 4 1 1 1 1 1 1 2
WF1109 6 1 1 2 1 1 1 2
WF1110 14 3 3 7 4 2 2 5
WF1201 9 1 1 3 1 1 1 3
WF1202 6 2 2 3 1 2 1 3
WF1203 3 1 1 2 1 1 1 1
WF1204 6 1 1 2 1 1 1 2
WF2501 9 2 2 3 1 2 2 4
WF2502 5 1 1 2 2 1 1 2
WF2503 17 3 2 3 2 2 2 3
WF2505 7 2 1 2 1 1 2 3
WF2506 11 2 2 3 3 2 1 5
WF3301 3 1 1 2 1 1 1 1
WF3302 5 1 1 3 1 1 1 3
WF3303 2 1 1 1 1 1 1 1
WF4201 4 1 1 1 1 1 1 2
WF4202 3 1 1 1 1 1 1 1
WF4203 9 2 3 5 2 2 1 1
WF4301 18 2 2 5 2 2 2 8
WF4311 7 2 1 1 1 1 1 4
WF4312 6 2 2 3 1 2 1 3
WF4402 5 1 1 3 1 2 1 3
WF4403 4 1 1 2 1 1 1 2
WF4404 3 1 1 2 1 1 1 2

Time - 41s 39min 35min 17min 28min 34min 46min�
Transactions - 46 47 76 45 43 39 83

UCP 320 150 155 170 160 150 150 190

per expert was 33 minutes, while the system processed whole corpus in 41 sec-
onds. The correlation analysis was conducted to identify whether differences in
experts opinions are of the systematic nature. Generally, correlation coefficient
is higher for experts pairs with the lower RMSD. Lower correlation is observed
for experts who differed more in their assessments (higher RMSD). Although,
correlation is significantly different from zero in most cases, we did not observed
variability caused by experts systematic over or underestimation.

www.manaraa.com

64 M. Ochodek and J. Nawrocki

Fig. 5. Experts transaction counting errors comparison. a) root mean square deviation
(RMSD) matrix and corresponding dendrogram (nearest distance) are presented for
the system and experts. RMSD coupling reveals that experts differs from themselves
(and system) in transactions counting. However, the group of four coherent experts and
system, could be observed: the UCTD tool (1) and experts (2, 4, 5, 6). b) Spearman’s
rank correlation coefficients matrix.

If we consider case study set in the UCP method context, the range of use cases
complexity (UUCW), based on transactions marked by the experts was from 150
to 190, with the mean value of 158. Majority of use cases were rather simple (3
from 7 experts marked all use cases as simple, which gave UUCW value 150).
The variability could be even grater if analysed use cases were more complex
(if more use cases were closer to simple, average and complex sets membership
border values). For comparison the UUCW counted as a number of steps would
be 320.

6 Transaction-Driven Use-Case Writing Style

We have noticed that reason for decisions variance might come from the use cases
structural problems (e.g. responds steps omissions, sequences of actor’s requests
etc.). Furthermore, we observed that literature examples used for the warmup
phase caused less difficulties for the experts. We have analysed use cases, which
involved greatest experts differences to point the most important problems.

In the figure 6, two versions of the same use case are presented. The first one
is coming from the requirements specification assessed in the case study. What
is interesting transactions number estimated by experts, varied from 2 to 5 (as-
sessments were 2, 3, 4, 5 transactions). There are at least two main problems in
the structure of this use case. The first one is omitting system response phrases.
This practice was very often observed. This makes use case shorter but as a side
effect scenario becomes more ambiguous. The sequence of actor requests might
be grouped within the one transaction. This is acceptable when more general

www.manaraa.com

Automatic Transactions Identification in Use Cases 65

Fig. 6. Use case from the case study corpus. a) original use case, with omitted actions
and condition statement, b) modified use case, conforming transaction driven writing
style.

action (e.g. User fills the login form) is split into many subactions (e.g. User
enters login. User enters password.). However, such sequence of actor’s requests
might also emerge as a result of omitting system response. We have noticed that,
in some cases, experts where treating single actor’s action as transaction, based
on their experience. Another important problem is conditional statement in the
main scenario. According to the guidelines concerning use cases, main scenario
should describe the most common sequence of actions. Introducing many alter-
native paths in the main scenario makes the use case difficult to read, because
the main goal is being blurred.

Second version of the use case, presented in the figure 6, has been rewritten
by authors to present more transactional approach to writing use case scenarios.
We leave assessment of the two presented versions to the reader.

Based on our experienced, it seems that use cases which cannot be easily split
into transactions are potentially ambiguous. Problems in transactions identifica-
tions are not an evidence that specification is incorrect, however they should be
perceived rather as a "bad smell" (an indicator of potential problem). Providing
use cases with a structural problems may lead to a similar variance in experts
opinions as in case of presented case study.

We have gathered few guidelines for writing use cases which are suitable for
the transactions identification:

– use case should be defined at system level, scenarios should contain actor’s
and system phrases (e.g. User does ..., System does ... etc.). The transaction
concept is hardly applicable to the business level use cases.

– actors names (real and system) should be defined explicitly,

www.manaraa.com

66 M. Ochodek and J. Nawrocki

– use cases should be provided in a structured textual form (or in other format
which might be transformed into text). This means that use case contains
sequences of steps, which forms scenarios. Each step begins with a prefix.
In order to process extensions, their prefixes should correspond to the step
prefix.

– system responses should not be omitted. This helps in finding transaction
beginning and closure meaningful from the actor point of view,

– a main scenario should describe the most common sequence of actions. It
should not contain conditional statements. If many alternative paths are
possible, it seems to be better idea to use extensions triggered on the actor
action with assertion statement, which presents actor’s intention.

In order to decrease ambiguity of use cases scenarios another action could
be taken as incorporating guidelines regarding writing properly structured use
cases [1,8,9,26], conducting requirements specification inspections and
reviews [3,12]. Many other, potential problems concerning use case structure
might be found automatically through the NLP analysis [7,14].

7 Conclusions

In the paper we have presented an approach to automatic transaction counting
in use cases. We have proposed a formal model of transaction, which can be
used for processing requirements specification. Transaction Tree derived from a
textual use case, provides detailed information about its structure (which might
be further used not only for effort estimation). Even though the presented model
of transaction is formal, it is still easy to applicate. It can be automatically
extracted from use-case text in reasonably short time.

The proposed solution for automatic transaction discovery has been imple-
mented as a prototype tool UCTD. Its accuracy was preliminarily verified in
the described case study. According to the results, the system did not differ
more from the experts than the experts between themselves. Moreover, the tool
provided most uniform judgements when compared with the human experts. In
addition, conducted case study revealed, that transaction identification is diffi-
cult even for people. When experts vary in their opinions, it can significantly
impact on the decisions, which are made based on the number of transactions
(e.g. size and effort estimation).

The reason for variability in expert opinions might be caused by quality of
specification or use case writing style. We believe that knowing number of certain
and uncertain transactions might help in detecting structural defects in use cases.

In the near future we would like to elaborate a method and a tool, which
would be capable of handling Polish, which is mother tongue for the authors.

Acknowledgments. We would like to thank Alicja Ciemniewska, Piotr Godek,
Jakub Jurkiewicz, Wojciech Kopras, Marek Kubiak, Bartosz Michalik and
ï£¡ukasz Olek for valuable discussions and involvement in the proposed solu-
tion assessment.

www.manaraa.com

Automatic Transactions Identification in Use Cases 67

This research has been financially supported by the Ministry of Science and
Higher Education under grant N516 001 31/0269.

References

1. Adolph, S., Bramble, P., Cockburn, A., Pols, A.: Patterns for Effective Use Cases.
Addison-Wesley, Reading (2002)

2. Albrecht, A.J., Gaffney Jr., J.E.: Software function, source lines of code and envel-
opment effort prediction: a software science validation. Mcgraw-Hill International
Series In Software Engineering, pp. 137–154 (1993)

3. Anda, B., Sjøberg, D.I.K.: Towards an inspection technique for use case models.
In: Proceedings of the 14th international conference on Software engineering and
knowledge engineering, pp. 127–134 (2002)

4. Arnold, M., Pedross, P.: Software Size Measurement and Productivity Rating in
a Large-Scale Software Development Department. In: Proc. of the 20th ICSE, pp.
490–493 (1998)

5. Banerjee, G., Production, A.: Use Case Estimation Framework.
6. Beck, K., Fowler, M.: Planning Extreme Programming. Addison-Wesley, Reading

(2000)
7. Ciemniewska, A., Jurkiewicz, J., Nawrocki, J., Olek, Ł.: Supporting use-case re-

views. In: Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 424–437. Springer,
Heidelberg (2007)

8. Clemmons, R.K.: Project Estimation With Use Case Points. CrossTalk–The Jour-
nal of Defense Software Engineering (February 2006)

9. Cockburn, A.: Writing effective use cases. Addison-Wesley, Boston (2001)
10. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A framework

and graphical development environment for robust NLP tools and applications. In:
Proceedings of the 40th Anniversary Meeting of the Association for Computational
Linguistics (2002)

11. Diev, S.: Software estimation in the maintenance context. ACM SIGSOFT Software
Engineering Notes 31(2), 1–8 (2006)

12. Dutoit, A.H., Paech, B.: Rationale-Based Use Case Specification. Requirements
Engineering 7(1), 3–19 (2002)

13. Endres, A., Rombach, H.D.: A Handbook of Software and Systems Engineering:
Empirical Observations, Laws, and Theories. Addison-Wesley, Reading (2003)

14. Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Applications of linguistic techniques
for use case analysis. Requirements Engineering 8(3), 161–170 (2003)

15. Fellbaum, C.: Wordnet: an electronic lexical database. Mit Pr (1998)
16. Harel, D.: Statecharts: A visual formalism for complex systems. Technical report,

Weizmann Institute of Science, Dept. of Computer Science (1986)
17. Harry, A.: Formal Methods Fact File: VDM and Z. Wiley, Chichester (1996)
18. Jacobson, I.: Object-oriented development in an industrial environment. ACM SIG-

PLAN Notices 22(12), 183–191 (1987)
19. Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G.: Object-oriented software

engineering: A use case driven approach (1992)
20. Karner, G.: Resource Estimation for Objectory Projects. Objective Systems SF

AB (copyright owned by Rational Software) (1993)
21. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of the

41st Annual Meeting of the Association for Computational Linguistics, pp. 423–430
(2003)

www.manaraa.com

68 M. Ochodek and J. Nawrocki

22. Kusumoto, S., Matukawa, F., Inoue, K., Hanabusa, S., Maegawa, Y.: Estimat-
ing effort by use case points: method, tool and case study. In: Proceedings. 10th
International Symposium on Software Metrics, pp. 292–299 (2004)

23. Reif, W.: Formale methoden fur sicherheitskritische software - der kiv-ansatz. In-
formatik - Forschung und Entwicklung 14, 193–202 (1999)

24. Reisig, W.: Petri nets, an introduction. In: Salomaa, A., Brauer, W., Rozenberg,
G. (eds.) EATCS, Monographs on Theoretical Computer Science, Berlin, Springer,
Heidelberg (1985)

25. Ribu, K.: Estimating object-oriented software projects with use cases. Master’s
thesis, University of Oslo, Department of Informatics (2001)

26. Rolland, C., Achour, C.B.: Guiding the construction of textual use case specifica-
tions. Data Know Eng. 25(1), 125–160 (1998)

27. Schneider, G., Winters, J.P.: Applying use cases: a practical guide. Addison-Wesley
Longman Publishing Co., Inc., Boston (1998)

www.manaraa.com

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 69–83, 2008.
© IFIP International Federation for Information Processing 2008

A Collaborative Method for Reuse Potential Assessment
in Reengineering-Based Product Line Adoption

Muhammad Asim Noor1, Paul Grünbacher2, and Christopher Hoyer1

1 Institute for Systems Engineering & Automation,
Johannes Kepler University, 4040 Linz, Austria
{man,hoc}@sea.uni-linz.ac.at

2 Christian Doppler Laboratory for Automated Software Engineering,
Johannes Kepler University, 4040 Linz, Austria

paul.gruenbacher@jku.at

Abstract. Software product lines are rarely developed from scratch. Instead the
development of a product line by reengineering existing systems is a more
common scenario, which relies on the collaboration of diverse stakeholders to
lay its foundations. The paper describes a collaborative scoping approach for
organizations migrating existing products to a product line. The approach uses
established practices from the field of reengineering and architectural recovery
and synthesizes them in a collaborative process. The proposed approach em-
ploys best practices and tools from the area of collaboration engineering to
achieve effective collaboration. The paper presents a case study as initial vali-
dation of the proposed approach.

Keywords: Reuse potential assessment, collaboration, product line adoption,
product line planning.

1 Introduction

Organizations usually do not start software product lines from scratch. It is more
common that organizations with successful products in a particular domain find the
need to adopt a product line (PL) approach to capitalize on systematic reuse of the
common functionality among existing products [1, 2]. Existing systems are the result
of large investment and can not be easily discarded as they embody substantial do-
main knowledge and expertise. The reuse of existing assets is critical in PL adoption
as developing existing systems anew for a PL is typically expensive and risky [3].
Careful planning is thus needed for the success of product line adoption. It is essential
to assess the suitability of existing assets for reuse in a product line and to estimate
the effort required to tailor those assets. Software products are planned, designed, and
developed collaboratively by diverse people. The knowledge essential to assess the
reuse potential of existing products is distributed among architects, product managers,
developers, or maintainers and spread in documents and application source code [4].
Numerous formal approaches for reuse potential assessment exist in areas such as
software maintenance [5, 6] or software reengineering [7-10]. These methods focus
on formally captured information in documentation, models, and source code. The

www.manaraa.com

70 M.A. Noor, P. Grünbacher, and C. Hoyer

collaborative aspects of reuse potential assessment have so far received only little atten-
tion. Although existing approaches related to reuse potential assessment [8, 11-13] are
collaborative in nature they are rather vague with respect to how effective collaboration
can be achieved.

In the paper we present a collaborative and stakeholder-centric approach to reuse
potential assessment. It uses stakeholders’ knowledge and experience of existing
systems as primary sources of information to identify the existing components and to
prioritize them according to their potential for reuse. The approach also enables the
team to produce working estimates of the effort needed to modify those components.
Such an approach is invaluable at PL scoping and planning stage. It is conducted at a
high level of granularity (i.e., logical components, subsystem or packages) to avoid
getting lost in technical details.

Boehm has argued that collaborative methods are key elements of future software
engineering methods [14]. We thus believe that the collaborative approach nicely
complements more formal approaches. It uses proven techniques and guideline from
the discipline of collaboration engineering (CE) to achieve effective collaboration. CE
is an approach to designing work practices for high-value collaborative tasks [15, 16].
In CE proven patterns of group collaboration, called thinkLets, are used to describe
collaborative processes [15] and to foster the interaction of individuals and teams.
ThinkLets describe collaborative techniques in a compact form and can be flexibly
combined to achieve the desired results. For instance, there are thinkLets that con-
cisely describe different brainstorming and prioritization techniques. It has been
shown that different software engineering tasks can be supported by composing
collaborative activities from thinkLets [17, 18]. While thinkLets might appear proc-
ess-centric and tool-centric at first sight they should rather be seen as facilitation
techniques that are optimized to structure high-value group tasks.

The remainder of the paper is structured as follow: In Section 2 we discuss
related work in the field of product line adoption, software assessment for reengineer-
ing, and collaboration engineering. Section 3 presents layers 1 and 2 of our approach
and explains how the approach is supported by thinkLets. In Section 4 we present a
case study and discuss its results. A conclusion and an outlook to further research
round out the paper.

2 Related Work

Many methods and techniques are reported in literature [5-7, 9, 10] for assessing exist-
ing software for maintenance and evolution. These methods aim at evaluating existing
software with respect to business value and technical value to identify promising candi-
dates for reengineering (e.g. [5]). The technical value is determined by variables such as
maintainability, decomposability, deterioration, or obsolescence. The Product Line
Practice Framework by Clements et al. [1] represents a comprehensive framework deal-
ing with all aspects of product lines from development to evolution. It provides high
level guidance for mining existing assets. The approach makes use of the options

www.manaraa.com

 A Collaborative Method for Reuse Potential Assessment 71

analysis for reengineering (OAR) method [8] and the mining architecture for product
line (MAP) method [12] for identifying existing assets to be reused in product line
development. However, the framework does not shed light on the collaborative aspects
of this process [8, 12].

Bergey et al. [8] define software reengineering as “transforming an existing design
of a software system (or element of that systems) to a new design while preserving the
system’s intrinsic functionality”. Traditional reengineering approaches start with the
analysis of legacy assets, the extraction of design and architectural information fol-
lowed by an exploration of the options and possibilities, and the implementation of
the best option (e.g. [13]). The Horse shoe model presented as part of OAR in [8] is an
example of such an approach. SRAH [7] is a process for assessing legacy software to
select the best options for legacy software evolution and to ease maintenance. The
output of the process is a succinct report on which senior management can make in-
formed decisions. Kolb et al. report on a case study [19] about the use of refactoring
techniques to evolve and adapt existing components for reuse in a product line.

Several authors have addressed product line scoping and planning. For instance,
Schmid [20] proposes a three staged approach comprised of product mapping, domain
potential analysis and reuse infrastructure scoping. We presented a collaborative
product mapping approach in the context of product line adoption in earlier work
[4, 21, 22] based on Schmid’s framework. In [23] Schmid explores the economic
impact of product line adoption and evolution and identifies the four adoption strate-
gies: big bang, project integration, reengineering-based, and leveraged (deriving a
product line from another product line). In reengineering-based product line adoption
the scoping activities gain a different focus as the product map guides the extraction
of features from legacy systems as suggested in [4, 21, 22]. Other work on product
line adoption can be found in a case study by Bayer et al. [24] who report on a migra-
tion process guided by the RE-PLACE approach. In [25] Ebert et al. identify a clear
business focus, strong release planning, and requirements management as success
criteria for product line adoption. Kircher et al. in [26] discuss challenges in product
line adoption and report a set of best practices.

The discipline of collaboration engineering provides a wide range of practices, patterns
and tools to achieve effective collaboration. Collaboration engineering aims at designing
work practices for practitioners to support high-value recurring collaborative tasks [15].
There are six general patterns of collaboration: generate, reduce, clarify, organize, evalu-
ate, and build consensus [27]. The approach tries to provide the efficiency and effective-
ness of professional facilitators to the practitioners who are not experts in team interaction.
ThinkLets [16] describe patterns for collaborative activities and have become widely
accepted building blocks for designing collaborative processes. A thinkLet is a named,
scripted, and well-tested activity that produces a known pattern of collaboration among
people working together on a common goal [28]. There are currently about 70 well-
documented thinkLets [29] some of which are used in our approach to reuse potential
assessment. Many collaborative processes have been successfully designed using thin-
kLets. An example is the requirements negotiation method EasyWinWin which incorpo-
rates a number of agile principles [30]. Our earlier work [4, 21, 22] also suggest that
collaborative techniques are valuable and useful in product line planning.

www.manaraa.com

72 M.A. Noor, P. Grünbacher, and C. Hoyer

3 A Collaborative Process for Reuse Potential Assessment

Fig. 1 shows the involved participants, inputs and outputs of the Reuse Potential As-
sessment (RPA) process. The process relies on the knowledge and experience of the
participants, available documentation and analyses of the systems to be reused, and
the proposed product map of the future product line.

Fig. 1. Participants, inputs and output of the reuse potential assessment process

The selection of the right participants is a key factor for the success of the col-
laborative RPA process [31]. The selection must be based upon the knowledge,
experience and expertise of people with the products to be assessed. The inclusion of
domain experts and software architects in the team is essential. The number of techni-
cal experts needed for the RPA process for a particular product depends on the size
and complexity of the products to be assessed.

A product map as defined in [4, 21, 22] is an important input to the RPA process. It
is used to ensure a shared understanding about the common functionality among the
products of the PL and helps the team to identify logical components from the exist-
ing systems. A further input to the RPA process is a list of subsystem for each of the
products to be assessed. A brief summary explaining the functionality of the
subsystems is also provided. Furthermore, reusability metrics for the subsystems are
extracted beforehand and are provided as part of the subsystem summary. Similar to
existing models for reuse potential assessment [5, 8, 10] our RPA process makes use
of static analyses of the existing systems. The metrics used to evaluate the reusability
are size (e.g., file size method size), complexity (e.g., cyclomatic complexity, boolean
expression complexity, nesting levels), decomposability (e.g., n tier architecture),
dependencies (e.g., data abstraction coupling, fan-out), or understandability (e.g., ratio
of non commented line of code, naming) [5]. The static analysis can be facilitated by
tools, e.g., Checkstyle1. Commercial IDEs (e.g. IntelliJIDEA) support static analysis
on the desired levels of abstraction (e.g., method, class, or package).

We describe the collaborative RPA process on three layers of abstraction: Fig. 2
shows the highest layer 1, i.e., the tasks of the process, input and output of the tasks,
the collaboration patterns used in the execution of the task, and the sequence of the

1 http://eclipse-cs.sourceforge.net/index.shtml

www.manaraa.com

 A Collaborative Method for Reuse Potential Assessment 73

Fig. 2. Task view of the RPA process (Layer 1)

execution of the tasks. At layer 2, we show how the tasks and collaboration patterns
are supported by thinkLets (cf. Fig. 3). Layer 3 (cf. case study section 4) describes a
concrete enactment of the process during a pilot case study demonstrating the actual
use of collaborative tools.

Fig. 2 shows the process tasks and their associated thinkLets. There are seven thin-
kLets used in the process: The thinkLet ReviewReflect facilitates a group to review an
outline or a document. Team members collaboratively go through the outline and record
their thoughts and suggestion by adding comments. Right after, these ideas are dis-
cussed in a moderated fashion. Consolidated recommendations are prepared or changes
to the documents are made. The thinkLet BucketWalk aims at achieving a shared vision
amongst groups of people by a collaborative walkthrough of all the items in different
categories while encouraging the discussion for issues and demanding explanation. The
group does not move forward before open issues are resolved. The thinkLet LeafHopper
aims at eliciting ideas from participants regarding a set of topics. The thinkLet Pop-
cornSort helps structuring collected raw ideas into appropriate categories.

The thinkLet StrawPoll enables decision-making through measuring opinions of
the participants in quantitative terms. A wide variety of voting methods can be used

www.manaraa.com

74 M.A. Noor, P. Grünbacher, and C. Hoyer

Fig. 3. ThinkLets view of the process (Layer II)

with this thinkLet. The thinkLet CrowBar helps to elicit reasons for discord. It is
usually used after the thinkLet StrawPoll, which highlights the agreements and dis-
agreements resulting from certain issues. The thinkLet MoodRing aims at building
consensus. It is usually used together with the thinkLet CrowBar, which highlights
reasons for disagreement. These reasons are discussed in a moderated fashion. During
the discussion persons originally disagreeing can change their mind and change their
vote anonymously.

More specifically the purpose of each task in the collaborative process is as
follows:

Task 1: Review Process Objectives and Reuse Focus. The facilitator (i) communicates to
the participants the objectives of the overall process and the agenda and (ii) fine-tunes the
process in light of the participants’ input. The involved stakeholders include product
managers, architects, developers, maintainers and domain experts. The participants col-
laboratively review each task of the agenda. The team agrees on the focus of reuse at this
stage, i.e., the principal elements of interest for a team meeting (e.g., particular areas of
the source code, algorithms, GUIcomponents, documentation, test cases or test data, etc.).
This task is supported by the thinkLet ReviewReflect.

Task 2: Review Product Line Feature Map. The RPA process relies on a product map as
input, which can be defined collaboratively as outlined in [4, 21, 22]. It is important for

www.manaraa.com

 A Collaborative Method for Reuse Potential Assessment 75

the team to develop a shared vision regarding the scope and vision of the product line
before mining for potential assets. The participants familiarize themselves with the
product map of the product line under development, which is described in terms of
features, domains and products. They use the thinkLet BucketWalk to collaboratively
navigate through the product map and to suggest changes. This helps to create a shared
vision among participants regarding the scope and structure of the product line. This
knowledge is essential to identify correct logical components, which may be suitable to
be reused as PL core assets. Schmid [20] suggests to use domains to ease the task of
identifying core assets for a PL. Domains are defined as relatively independent coherent
clusters of functionality that contain one or more features. Features represent externally
visible characteristics of systems (e.g., software project tracking in a product line for
project management).

Task 3: Identify Logical Components. In this task participants identify logical compo-
nents from existing products, which are then further investigated for their suitability
to be included in the product line. A logical component can be seen as an
abstract core asset of the envisaged PL. A logical component can be realized by either
adapting existing implementation or by developing them anew. However, the focus of
our approach is on reuse of existing assets. That is why we discuss only the case of
adaptation. The challenge of this task is to identify solution elements (e.g., classes,
modules, subsystems, libraries) from existing systems as candidate core assets. It is
essential to balance the desire for high quality core assets and the effort required to
adapt the existing technical implementation. The output of the task is a list of logical
components for every existing product. The task is based on a collaborative walk-
through of the modules of a product. For instance, in case of a Java-based system,
modules are packages with a brief summary and the list of constituent classes. As-
suming that the participants are well familiar with the products, they identify candi-
date logical components based on the information presented to them. The collection
of the logical components is accomplished by executing the thinkLet LeafHopper
which uses directed brainstorming. The participants brainstorm candidate components
to a shared list. People see what other logical components have been suggested by
other participants and they can add comments. The thinkLet BucketWalk facilitates
common understanding and refinement of the list of logical components through
moderated discussion. The thinkLet StrawPoll (electronic voting) may be conducted
to reach consensus within the team whether a proposed logical component should be
kept for further investigation or not. This task is repeated for every existing product
and results into a list of logical components for every investigated system.

Task 4: Map Technical Solution Packages to Logical Components. Participants iden-
tify links between the logical components and the technical solution packages of the
existing product. For instance, dependencies are established between existing modules
or subsystems which implement the functionality of a logical component. The scope
and definition of logical components are refined where necessary. The thinkLet Pop-
cornSort facilitates the assignment of implementation units (e.g., modules or classes
or packages) to the appropriate logical components and helps bounding the scope of
the logical component. The thinkLet BucketWalk ensures consensus among partici-
pants about the appropriateness of the scope of the logical components. This task is
repeated for each prospective product and results in improved definitions of the
logical components. The results can be refined in task 6 when performing a more

www.manaraa.com

76 M.A. Noor, P. Grünbacher, and C. Hoyer

detailed analysis of the existing system. This task can be supported by feature location
approaches (e.g., [32]) or scenario-based traced analysis techniques [33] depending on
the complexity of the system and the knowledge of the stakeholders.

Task 5: Map Features to the Logical Components. Participants identify links between
logical components and the features from the product map. This task is performed in a
similar manner as the previous task using the thinkLets PopcornSort and BucketWalk.
Each feature is assessed and assigned to the appropriate logical component. The task
is repeated for every product. The goal of tasks 4 and 5 is to establish initial coarse-
grain traceability between features, logical components and source code. This trace-
ability allows the visualization of the logical components and eases later design ac-
tivities. Even if traceability links exist (e.g., between requirements, design artefacts
and source code) the above two tasks may be performed to take into account the new
abstraction layer of logical components.

Task 6: Review Reusability Metrics of Logical Components. Participants review the
logical components using the thinkLet ReviewReflect. For each package thought to be
reusable in the logical component, they go through the information provided in the
subsystem summary. Mainly, the different implications for the efforts required for
reusing the package are reviewed. First, participants collaboratively go through the
information (functional summary and metrics of each package) and add their opinion.
Questions they try to answer include ‘What are the challenges in reusing this pack-
age?’ or ‘What reengineering techniques are suitable for this package?’. Later, the
collected comments are discussed in a moderated fashion and a consolidated list of
issues and possible solution is created for each logical component.

Task 7: Evaluate the Reuse Potential of Logical Components. Participants estimate
the costs and effort required to adapt the logical component as a core asset of the
product line. The reuse effort estimation of the participants can be elicited through the
thinkLet StrawPoll, where participant have to assess the level of effort required to
tailor a particular logical component. In case stakeholders cannot agree about the
efforts required to tailor a certain logical components the thinkLet CrowBar is used
followed by the thinkLet MoodRing to reveal the reasons for disagreement. This
process is repeated for each logical component. The result of this task is an initial
estimate of cost/effort for adapting the logical components. These estimates are in-
tended for selecting the most promising components for adaptation during planning
while more formal cost estimation approaches can be used at design time. The task is
repeated for each product.

Task 8: Prioritize Logical Components for Reuse. In this task the logical components are
prioritized for further investigation at design time and later adaptation. It is accomplished
through the thinkLet StrawPoll, which is conducted by electronicvoting. Participants
assign values on a scale of 4 to each logical component. Two parameters are used: (i) the
value of reuse and (ii) the effort required to reuse the logical component. Logical compo-
nents which require less tailoring effort and have the highest business value will be as-
signed a top priority. In case of significant differences of opinion the thinkLets CrowBar
and MoodRing are executed as in the previous task. This task concludes the RPA process
and produces a list of the mostpromising candidate logical components for further
adaptation and refinement as core assets.

www.manaraa.com

 A Collaborative Method for Reuse Potential Assessment 77

4 Initial Evaluation

We conducted a pilot case study to assess the usefulness of the proposed collaborative
process and the usability of the supporting tools. The study was a fictitious
organisation developing a product line for project management tools based on open
source code assets. In order to define the desired product line, a group of three domain
experts developed a product map containing 120 features, 14 domains and three prod-
ucts for the project management domain. The feasibility study was based on the open
source systems Gantt Project2 and Project Factory3: The size of Gantt Project is 51
packages, 492 classes and is 63 KLOC. The size of Project Factory is 16 packages,
140 classes and 29 KLOC.

Fig. 4. Package summary containing reusability metrics

Three engineers participated in this case study. The process was conducted in three
workshops with duration of approximately 4 hours each. As preparation for the work-
shop the moderator (i) defined the agenda according to the tasks identified in this
paper, (ii) uploaded the feature map of the product line to the collaboration tool
GroupSystems, and (iii) uploaded the package list and package summaries containing
the reusability metrics to the collaborative tool (see Figure 4). The feature map was
developed prior to the workshop following the method described in [4, 21, 22].

2 http://sourceforge.net/projects/ganttproject
3 http://sourceforge.net/projects/projectfactory/

www.manaraa.com

78 M.A. Noor, P. Grünbacher, and C. Hoyer

Table 1. Metrics applied in the static analysis

Metric Level Description Value
Cyclomatic
Complexity

Method A measure for the minimum number of possible paths
through the source and therefore the number of required
tests.

10

Coupling Class A measure for the number of instantiations of other classes
within the given class.

7

Fan-out Class A measure for the number of other classes a given class
relies on.

20

NCSS Method A measure for the number of non-commented source
statement within a method.

50

BEC Line A measure for the number of &&, || and ^ in an expression.
(BEC = Boolean expression complexity).

3

File Size Class A measure of the file size in lines of code. 2000
Method Size Method A measure for the method size in lines of code. 150

Table 2. Gantt project metrics

Metric # of violations Average violations value
Cyclomatic complexity 45 15
Coupling: 51 18
Fan-out 36 38
NCSS (Non-commented lines of code) 35 97
BEC (Boolean expression complexity) 3 9
File Size 2 2539
Method Size 12 230

In order to extract the reusability metrics a static analysis was conducted by one
software engineer for both products. Source code metrics such as cyclomatic complex-
ity, data abstraction coupling, fan-out, non commented line of code, size of the class and
size of the methods, are reported in literature to be useful indicators of the reusability of
the code [19, 34]. Generally, it is assumed that the lower the value of above mentioned
metrics the more reusable is that source code [34]. These combined metrics were used to
complement the overall picture and help to identify the reusable software elements.

Cyclomatic complexity, non-commented line of code, and size of method were
measured at method level. The remainder at class level. We used the open source tool
CheckStyle (available as an Eclipse plug-in) to calculate these metrics. The default
threshold values of CheckStyle (for above mentioned metrics) were used. These val-
ues concur with existing literature in the field of software maintenance and evolution
[19, 35]. Table 1 shows a brief description of the metrics, along with the default
threshold values of CheckStyle.

Table 2 shows the consolidated summary of these metrics for one of the products
assessed, i.e., Gantt project. For example, among 492 classes of Gantt Project 51
classes have a class data abstraction coupling of more than 7. Among these 51 classes
the average class data abstraction coupling is 18. Further analysis shows that these are
mainly those classes which primarily deal with the GUI (in the case of Gantt Project
they use Java Swing components). This indicates coupling is not a big hindrance
when reusing the Gantt Project source code.

Overall, these metrics indicate that the Gantt Project implementation is not overly
complex as only 45 methods exceed the threshold complexity value. Mostly, these

www.manaraa.com

 A Collaborative Method for Reuse Potential Assessment 79

Fig. 5. Consolidate list of issues of a logical component (output of task 6)

methods handle XML tags as data is stored in XML files. Most classes are within an
acceptable range of coupling and fan-out. There are only two classes and 12 methods
which violate the modest limit (2000, 150 LOC). The code is mostly well commented.
The extracted metrics indicate that components can be extracted from Gantt Project
implementation without excessive difficulty. Similar metrics were extracted from
Project Factory but are not reported in this paper due to space limitations. These met-
rics were added in the package summary for easy perusal of the participants. The
package level summary serves as a quick reference of the package implementation
and is used to define the logical components (task 3) and to review the reusability
metrics of the logical component (task 6).

In the following, we describe the enactment of each task in the pilot case study:
The first two tasks were performed once in the beginning whereas task 3 was repeated
for the two analyzed products. Tasks 4 to 7 were repeated for each logical component.
The first tasks (Review process objective and reuse focus and Review product line
feature map) were accomplished by conducting the thinkLets ReviewReflect and
BucketWalk respectively. The small number of participants who had already jointly
developed the process and product map earlier simplified these tasks. However, in
more realistic settings a presentation about the agenda would be needed to explain the
purpose and objectives of the exercise. The focus of the reuse was on GUI elements,
algorithms and cohesive functionality (e.g., forecasting, Gantt chart) in the source code.

The third task was to identify logical components from the source code. In Fig. 5
coloured entries represent the identified logical components. Participants used the
thinkLet LeafHopper to identify the logical components. This task was performed for

www.manaraa.com

80 M.A. Noor, P. Grünbacher, and C. Hoyer

both products simultaneously. In total the team identified 23 logical components from
Gantt Project. Many logical components were later found to be of too limited size or
use but no new components were added. Different team members had identified logi-
cal components at different level of granularity, which did not raise problems as logi-
cal components were refined in subsequent steps. Logical components were also
filtered out if considered as inappropriate based on selected criteria (e.g. the minimum
size of the implementation encompassed by the logical component).

Due to the tight schedule of the team members at the time of the case study task 4
(Map Technical Solution Packages to Logical Components) and task 5 (Map Features
to the Logical Components) were performed asynchronously. This allowed creating a
better visualization of the logical components, which was also necessary to support
the detailed analysis in task 6 as detailed traceability reports where unavailable for the
selected open source applications.

Task 6 (Review reusability metrics of logical component) was accomplished by
conducting the thinkLet ReviewReflect. The participants created a consolidated list of
issues and opinions for each logical component as shown in Fig. 5. This task aimed at
collecting information about the reusability of packages (in order to realize the logical
component) from the calculated metrics and the technical knowledge and experience
of the people with these packages.

Task 7 (Evaluate the Reuse Potential of Logical Components) is supposed to be per-
formed directly after task 6 so that participants still have the findings of the previous step
in their minds. However, in our case study the team did not perform this task. Estimates
of effort and cost can only be made on the basis of above mentioned information if the
team has in depth knowledge of the system. Such knowledge is available only for people
that have been involved in the design, development or maintenance of the product. The
teams in our case did not have such an intimate knowledge. Instead, the prioritization of
the logical components was performed directly after task 7.

Table 3. Prioritized high level logical components

Logical Component # of Packages # of Classes Total Size
GUI Components 11 103 13 KLOC
Task Management 6 67 7 KLOC
Gantt Chart 3 51 7 KLOC
IO Handling 4 51 6 KLOC
Calendar and Time Mgmt 3 31 3 KLOC
Actor (resource) Mgmt 2 19 2 KLOC
Test Suite 1 22 2 KLOC
Project Forecast (Factory) NA 2 1 KLOC
Project Management 1 46 17 KLOC

Lastly, the prioritization (task 8) was done using a collaborative voting tool. First, the
team members assessed the business value and the ease of reuse of each component on a
scale of 4. The average of these two values determined the priority of the component.
Table 3 shows the list of prioritized high level logical components beginning with the
components having highest priority.

These components have a similar business value as all are important in a project man-
agement application. Their priority is mainly determined on the basis of ease of reuse.

www.manaraa.com

 A Collaborative Method for Reuse Potential Assessment 81

We started the case study with two products offering quite similar functionality.
We aimed at identifying reusable components from these two products which can be
modified and used as core assets of a product line in the project management domain.
Out of 9 components identified for reuse, 8 come from Gantt Project and only the
component “Project Forecast” comes from Project Factory.

It is essential that people with intimate technical knowledge of the products
participate in the reuse potential assessment. Without such knowledge identifying
relevant logical components and creating traceability links between features, logical
component and physical component of the technical solution is difficult. The case
study team also suffered to some extent from these problems due to a lack of in-depth
knowledge of the products. It identified 9 components that can be reused as core as-
sets in the product line (as shown in table 3) based on an initial list of 24 and 13 can-
didate components from Gantt Project and Factory respectively.

5 Conclusions and Future Work

We presented a collaborative approach for reuse potential analysis that is intended to
complement more formal approaches for reengineering legacy assets in the area of
product line planning. The process aims at supporting a team to collaboratively iden-
tify components with a high reuse potential from different legacy products. The proc-
ess also increases the understanding of traceability and the dependencies between
features and technical solution components and provides initial estimates for the effort
of reuse. The presented process relies on the careful selection of stakeholders to
ensure the knowledge and experience required. Absence of such knowledge and ex-
perience will undermine the collaborative aspects of the process and force the team to
rely on more formal approaches, i.e., reverse engineering.

Due to our experience with collaboration engineering methods and thinkLets in
other areas of software engineering such as requirements negotiation, risk manage-
ment, or software inspection we expect this collaborative process to scale well in a
real-world product line setting. The experience gained in the feasibility study con-
firms these findings. We will use the process in near future with an industrial partner
specialized in ERP solutions who is currently shifting to a product line approach. The
experiences also confirm that thinkLets can be effectively supported by collaborative
tools, in our case a Group Support System (GSS4) tool was used to support the stake-
hoder collaboration.

References

1. Clements, P., Northrop, L.: Software product lines: practices and patterns. Addison-Wesley,
Reading (2002)

2. Boeckle, G., Clements, P., McGregor, J.D., Muthig, D., Schmid, K., Siemens, A.G., Munich,
G.: Calculating ROI for software product lines. IEEESoftware 21(3), 23–31 (2004)

4 http://www.groupsystems.com

www.manaraa.com

82 M.A. Noor, P. Grünbacher, and C. Hoyer

3. Aversano, L., Tortorella, M.: An assessment strategy for identifying legacy system evolution
requirements in eBusiness context. J. Softw. Maint. Evol.: Res. Pract. 16, 255–276 (2004)

4. Noor, M.A., Grünbacher, P., Briggs, R.O.: Defining a Collaborative Approach for Product
Line Scoping: A Case Study in Collaboration Engineering. In: IASTED Conference on
Software Engineering (SE 2007) Innsbruck, Austria, February 13 (2007)

5. De Lucia, A., Fasolino, A.R., Pompelle, E.: A decisional framework for legacy system man-
agement. In: Proceedings of IEEE International Conference on Software Maintenance, pp.
642–651 (2001)

6. Ransom, J., Sommerville, I., Warren, I.: A Method for Assessing Legacy Systems for Evolu-
tion. In: Proceedings of Reengineering Forum, p. 98 (1998)

7. Software Engineering Assessment HandBook Version 3, DoD US (1997) last checked:
9-08-07, http://www.swen.uwaterloo.ca/~kostas/ECE750-3/srah.pdf

8. Bergey, J.K., O’Brien, L., Smith, D.: Options Analysis for Reengineering (OAR): A Method
for Mining Legacy Assets 2001. Carnegie Mellon University, Software Engineering Institute

9. Caldiera, G., Basili, V.R.: Identifying and qualifying reusable software components. IEEE
Computer 24(2), 61–70 (1991)

10. Sneed, H.M.: Planning the reengineering of legacy systems. IEEE Software 12(1), 24–34
(1995)

11. De Baud, J.M., Flege, O., Knauber, P.: PuLSE-DSSA—a method for the development of
software reference architectures. In: Proceedings of the third international workshop on
Software architecture, pp. 25–28 (1998)

12. O’Brien, L., Smith, D.: MAP and OAR Methods: Techniques for Developing Core Assets
for Software Product Lines from Existing Assets. Carnegie Mellon University, Software En-
gineering Institute (2002)

13. Stoermer, C., O’Brien, L.: MAP-Mining Architectures for Product Line Evaluations. In: Pro-
ceedings of the IEEE/IFIP Working Conference on Software Architectures, Amsterdam, The
Netherlands, August 2001, pp. 35–44 (2001)

14. Boehm, B.: A view of 20th and 21st century software engineering. In: Proceeding of the 28th
international conference on Software engineering (ICSE 2006), pp. 12–29 (2006)

15. Briggs, R.O., d.V.G.J., Nunamaker, J.J.F.: Collaboration Engineering with ThinkLets to Pur-
sue Sustained Success with Group Support Systems. Journal of Management Information
Systems 19(4), 31–64 (2003)

16. Briggs, R.O., De Vreede, G.J., Nunamaker Jr, J.F., Tobey, D.: ThinkLets: achieving predict-
able, repeatable patterns of group interaction with group support systems (GSS). In: Proceed-
ings of the 34th Annual Hawaii International Conference on System Sciences, p. 9 (2001)

17. Grünbacher, P., Halling, M., Biffl, S.: An empirical study on groupware support for software
inspection meetings. In: 18th IEEE International Conference on Automated Software Engi-
neering, pp. 4–11 (2003)

18. Grünbacher, P., Seyff, N., Briggs, R.O., In, H.P., Kitapci, H., Port, D.: Making every student
a winner: The WinWin approach in software engineering education. Journal of Systems and
Software 80(8), 1191–1200 (2007)

19. Kolb, R., Muthig, D., Patzke, T., Yamauchi, K.: Refactoring a legacy component for reuse in
a software product line: a case study. Journal of Software Maintenance and Evolution: Re-
search and Practice 18, 109–132 (2006)

20. Schmid, K.: A comprehensive product line scoping approach and its validation. In: Proceed-
ings of the 24th International Conference on Software Engineering, pp. 593–603 (2002)

21. Noor, M.A., Rabiser, R., Grünbacher, P.: A Collaborative Approach for Reengineering-based
Product Line Scoping in APLE - 1st International Workshop on Agile Product Line Engi-
neering 2006, Baltimore, Maryland (2006)

www.manaraa.com

 A Collaborative Method for Reuse Potential Assessment 83

22. Noor, M.A., Rabiser, R., Grünbacher, P.: Agile Product Line Planning: A Collaborative Ap-
proach and a Case Study. Journal of Systems and Software (to appear), doi:10.1016/j.jss.
2007.10.028

23. Schmid, K., Verlage, M.: The Economic Impact of Product Line Adoption and Evolution.
IEEE Software 19(4), 50–57 (2002)

24. Bayer, J., Girard, J.F., Wuerthner, M., De Baud, J.M., Apel, M.: Transitioning legacy assets
to a product line architecture. ACM SIGSOFT Software Engineering Notes 24(6), 446–463
(1999)

25. Ebert, C., Smouts, M.: Tricks and Traps of Initiating a Product Line Concept in Existing
Products. In: Proceedings of the 25th International Conference on Software Engineering
(ICSE 2003), pp. 520–525 (2003)

26. Kircher, M., Schwanninger, C., Groher, I.: Transitioning to a Software Product Family
Approach - Challenges and Best Practices. In: 10th International Software Product Line Con-
ference, 2006, pp. 163–171 (2006)

27. Briggs, R.O., Kolfschoten, G.L., Vreede, G.J.d., Dean, D.L.: Defining Key Concepts for Col-
laboration Engineering. In: Americas Conference on Information Systems, AIS, Acapulco
(2006)

28. De Vreede, G.J., Kolfschoten, G.L., Briggs, R.O.: ThinkLets: a collaboration engineering pat-
tern language. International Journal of Computer Applications in Technology 25(2), 140–154
(2006)

29. Kolfschoten, G.L., Appelman, J.H., Briggs, R.O., de Vreede, G.J.: Recurring patterns of
facilitation interventions in GSS sessions. In: Proceedings of the 37th Annual Hawaii Interna-
tional Conference on System Sciences, pp. 19–28 (2004)

30. Boehm, B.W., Ross, R.: Theory-W software project management principles and examples.
IEEE Transactions on Software Engineering 1989 15(7), 902–916 (1989)

31. Harder, R.J., Keeter, J.M., Woodcock, B.W., Ferguson, J.W., Wills, F.W.: Insights in Im-
plementing Collaboration Engineering. In: Proceedings of the 38th Annual Hawaii Interna-
tional Conference on System Sciences, HICSS 2005, p. 15b (2005)

32. Eisenbarth, T., Koschke, R., Simon, D.: Locating features in source code. IEEE Transactions
on Software Engineering 29(3), 210–224 (2003)

33. Egyed, A.: A Scenario-Driven Approach to Traceability. In: Proceedings of the 23rd Interna-
tional Conference on Software Engineering (ICSE), Toronto, Canada, pp. 123–132 (2001)

34. Barnard, J.: A new reusability metric for object-oriented software. Software Quality Jour-
nal 7, 35–50 (1998)

35. McCabe, T.J., Butler, C.W.: Design complexity measurement and testing. Communications
of the ACM 32(12), 1415–1425 (1989)

www.manaraa.com

Corporate-, Agile- and Open Source Software

Development: A Witch’s Brew or An Elixir
of Life?

Morkel Theunissen, Derrick Kourie, and Andrew Boake

Espresso Research Group, Department of Computer Science,
University of Pretoria

{mtheunis,dkourie}@cs.up.ac.za, Andrew.Boake@absa.co.za

Abstract. The observation that the Open Source Software develop-
ment style is becoming part of corporate software development, raises
questions about its compatibility with traditional development processes.
Particular compatibility questions arise where the existing corporate de-
velopment style is in the agile tradition. These questions are identified
and discussed. Measures that can be taken to avoid clashes are suggested.
An example illustrates how Corporate-, Agile- and Open Source Software
could intersect, and SPEM modelling is employed to show how corporate
processes would need to adapt to accommodate the new scenario.

Keywords: Open source software development, Agile software develop-
ment, Corporate software development, Compatibility.

1 Introduction

“Double, double, toile and trouble; Fire burne, and Cauldron bubble.”
—Macbeth (Act IV, Scene 1)

A dispassionate consideration of the cauldron of forces at play in corporate1

software development, may well raise the question of whether two contempo-
rary (and apparently orthogonal) approaches belong in the brew: Agile Software
Development (ASD) and Open Source Software Development (OSSD). Over the
past decade, the impact that each of these paradigms has had on the software
development industry has grown, and there are signs that this trend will con-
tinue. It therefore seems relevant to consider the extent to which these paradigms
are mutually exclusive, and, conversely, whether synergies between them can be
found. Could blending them into corporate software development processes pro-
duce an elixir of life2 or will they combine into a poisonous witches’ brew?
1 The term corporate is used to reference a medium to large enterprise that has its

own in-house software developers.
2 Using this metaphor does not imply that we believe that a silver bullet might be at

hand—to reach for another well-used metaphor in software development contexts.
However, sobriety does not negate the validity of aspiring to an optimal approach in
software development endeavours.

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 84–95, 2008.
c© IFIP International Federation for Information Processing 2008

www.manaraa.com

Corporate-, Agile- and Open Source Software Development 85

Although not universally practiced, ASD is already widely represented in
many industries and, to this extent, is already in the cauldron. Open Source
Software (OSS), too, plays a significant role in many corporate contexts. How-
ever, this role varies widely: from simple usage of OSS (as in the provision of
internet infrastructure components and development tools); to attempts by cor-
porates to leverage the energy inherent in OSSD by managing such projects
(the Eclipse project of IBM being a prominent example). There are many vari-
ants between these extremes, such as making casual contributions to OSS as
a byproduct of using it. An example of just such a scenario will be presented
below. Some corporates have even adopted an in-house OSS development style
(HP’s POS approach being a case in point [1]).

The present discussion excludes scenarios such as the latter, namely where
the corporate fully controls the development style. It also excludes simple, un-
involved OSS usage. The corporate OSSD activity that remains and that is the
subject of the present discussion (i.e. development which is only partially con-
trolled by corporates), though fairly limited, nevertheless has been growing quite
significantly, and could become a disruptive force in the development processes
into which it is supposed to blend.

For the purpose of this discussion the extent of corporate participation and
the OSS project’s scope and size will not be considered. Instead a more generic
view of the forces at work is taken. Scope and size influences are therefore a
matter for further study.

It should be noted at the outset that OSSD is not a formally defined de-
velopment methodology. Although every OSS community uses its own process,
there is nevertheless a common overall philosophy. For the purposes of this paper
OSSD is taken to refer to development that is more or less in line with common
principles that have emerged from prominent OSS projects.

Section 2 briefly surveys the nature of corporates, difficulties they are likely
to encounter when attempting to engage in OSSD, and managerial adjustments
that will be needed. This discussion does not specifically refer to ASD. Instead,
the connection between ASD and OSSD is left to Section 3. Here it is pointed out
that the OSSD and ASD paradigms apparently embody contradictory attributes,
and that consequently, any attempt by a corporate to simultaneously engage in
both would appear to be particularly fraught with difficulties. The section also
points to ways in which the identified tensions could be managed. An example
to illustrate further the kinds of difficulties that might be anticipated is given
in Section 4 and SPEM is used as a medium for illustrating ways in which
processes might be adapted to alleviate difficulties. Section 5 proposes general
ways of ameliorating difficulties that have been identidifed, before concluding in
Section 6.

2 OSSD and Corporate Culture

OSS refers to software developed by a movement that values a distributed,
open, collaborative development model, as well as the free distribution and

www.manaraa.com

86 M. Theunissen, D. Kourie, and A. Boake

modification of its software. As mentioned before OSS already plays a signif-
icant role in many corporate software development contexts and as such have
been scrutinised by many. Our aim is only to highlight the elements relevant to
the discussion at hand.

The corporate environment conventionally places certain requirements on the
software development process to enforce employee accountability. This imposes
a number of stresses on a development team in such an environment—stresses
that will inevitably be accentuated when attempting to engage in OSSD. The
following items illustrate some of the clashes that could occur between common
corporate culture and that of people typically engaged in OSSD:

– Monitoring of developers
In an environment where remuneration for work is the norm, there is a need
to manage and monitor employees, and this is generally taken for granted
by regular corporate employees. However, participants in traditional OSS
projects are not subjected to such regulation, due to the voluntary nature of
the development. In the corporate paradigm, once a manager has assigned
a task to a subordinate, it is normally assumed that the manager will track
the subordinate’s progress and activities, and respond appropriately. This
scenario can become complicated when an OSSD style is used internally. It is
difficult to monitor what developers are contributing to different and disjoint
OSS efforts. Furthermore, it may be difficult for management to assess the
importance or relevance of an OSS contribution that is not directly used by
the organisation.

– Fixed time schedules
Traditional OSS projects live by the principle of “release often”, but these
releases are largely ad hoc, occurring whenever the core maintainers feel that
it is time to do a release. Within the corporate environment there is a need
to link different software development projects to fixed time frames so as to
support business-driven goals such as taking advantage of market windows
and managing financial aspects such as Return-On-Investment (ROI), and
IT-driven goals such as coordinated roll-out of related projects.

– Quality Assurance Processes
OSSD, by its very nature, encourages extensive peer review. One of the
underlying notions in OSS is expressed in the aphorism known as Linus’
Law: “Given enough eyeballs, all bugs are shallow.” [2]. However, although
some OSS projects may apply certain rules prior to accepting contributions
(patches), there are generally no formal OSS code review processes (in par-
ticular between the core members). In contrast, in both the agile paradigm,
and in many other traditional software engineering approaches, code review
procedures are adhered to more diligently.

It is incumbent on corporate management to take cognisance of the contra-
dictions between these styles of producing software, and to manage them as
and when needed. These difficulties notwithstanding, creative management so-
lutions should be sought where these conflicts arise most prominently. Sections 4
and 5 illustrate these matters in a specific example. In general, it remains the

www.manaraa.com

Corporate-, Agile- and Open Source Software Development 87

responsibility of a manager has to ensure that a developer completes essential
tasks in due time and in compliance with the requisite quality. Work on random
OSS-associated tasks that might be regarded as interesting or fun should be
relegated to secondary status, if tolerated at all within the work hours.

There are other aspects to the OSS paradigm that corporate software devel-
opers need to understand. One of these aspects is the legal standing of software
development, specifically in relation to open-source licenses. Corporate develop-
ers generally know about proprietary licensing, but they might not be prepared
for the variety of OSS licenses and their inter-relationships. OSS developers
need to be able to distinguish between the different licenses and their compati-
bilities. For example, consider the implications if one wanted to link in modules
from a library that was issued under the GNU General Public License version
2 (GPLv2), while one’s own code was distributed under the Berkeley Software
Distribution (BSD) license? An OSS developer would need to know that the BSD
and GPLv2 licenses are compatible, but only if the BSD code is distributed un-
der the revised3 BSD version [3,4].

Furthermore, managers of software developers would need to realise that if
they have both closed-source and open-source projects in their portfolio, then
they should isolate the developers from one another to ensure that no ‘contam-
ination’ of code takes place.

3 OSSD and ASD

ASD values individuals and their interactions, working software, customer col-
laboration and responding to change. The primary drivers for ASD are speed
and flexibility. Born out of a desire to reduce the overhead caused by over cer-
emony of traditional software development, the principles of ASD have gained
increasing acceptance by corporate developers, under pressure to produce qual-
ity software at a rapid pace. As in the case of OSSD, ASD too is an overall
philosophy with many variants, each of which finds its application in different
development teams.

3.1 OSSD Is Not ASD

Superficially, ASD and OSSD have many aspects in common, including the early
delivery of useful software, the valuing of feedback, basing scope and design pri-
marily on utility, and an informed and productive developer community. Indeed,
It has been alleged that OSS as a style is just another instance of ASD [5]. To
assess the validity of this allegation, we have investigated the extent to which the
generic development model of OSS as set out in literature (for example, [2,6])
complies with the principles set out in the Agile Manifesto [7]. Furthermore we
have compared the stereotypical OSS style and Extreme Programming (XP).
Both of these investigations are reported in [8]. Another study by Warsta and

3 Without the advertisement clause.

www.manaraa.com

88 M. Theunissen, D. Kourie, and A. Boake

Abrahamsson [9] further highlights the differences and similarities between OSS
and ASD. Our findings are summarised below.

ASD was born within the corporate world and consequently has a strong fo-
cus on certain elements that are not associated with traditional OSSD. These
include: co-located teams ; assigned team membership; and remunerated employ-
ment which brings along a concomitant obligations and hierarchical relation-
ships. Furthermore the client role tends to be played by a non-programmer who
may be the business-user. In contrast, OSSD traditionally starts off with a single
developer who is simultaneously the ‘client’, in that the software to be devel-
oped is intended to address a personal need (which could be work related). As
the project grows other developers around the world may contribute or even
eventually take over the project.

In further assessing the two paradigms, we noted that “the discussion was
mainly (but not exclusively) in reference to the stereotypical traditional OSS
development style. In reality, the culture surrounding OSS development is neither
monolithic nor static”. The same viewpoint was taken in regard to ASD. The
compliance investigation showed that—at least to some extent—OSSD is indeed
compatible with the following list of principles taken verbatim from the Agile
Manifesto:

– Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

– Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

– Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

– Working software is the primary measure of progress.
– Continuous attention to technical excellence and good design enhances

agility.
– Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.
– Build projects around motivated individuals ... and trust them to get the

job done.

However, the remaining Agile Manifesto principles are not at the core of the
stereotypical OSSD approach. These are:

– Business people and developers must work together daily throughout the
project.

– ...Give them the environment and support they need...
– The most efficient and effective method of conveying information to and

within a development team is face-to-face conversation.
– At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behaviour accordingly.
– Simplicity—the art of maximising the amount of work not done—is essential.
– The best architectures, requirements, and designs emerge from self-organising

teams.

www.manaraa.com

Corporate-, Agile- and Open Source Software Development 89

The investigation in [8] therefore concluded that there are distinct differences
between the two approaches. As a result, the scope for synergy between them is
constrained, due to tensions that are likely to arise between teams who follow
these opposing principles.

3.2 Adapting ASD

Consider a typical scenario where individual co-located agile development teams
collaborate either with other such teams scattered around the world in an OSSD
style, or with external OSS projects. Figure 1 provides an example of two Agile
teams contributing to an OSS project. An alternative scenario would be where
one of the agile teams –as a entity– form part of the core team of the OSS
project. This subsection highlights some of the potential adjustments that might
be needed.

Individual

Core Team

Agile Team (2)

Agile Team (1)

Fig. 1. Agile Teams participating in an OSS project

– Adapting to remote communication
From the agile perspective, accommodating a different way of communicating
between developers might perhaps be the most challenging. As stated before,
the stereotypical agile approach depends extensively on co-located teams
who rely on face-to-face verbal communication between members and the
availability of on-site customers. This is typically not the case within an OSS
development team. Furthermore, the daily routine of an agile team is usually
rigorously controlled. Typically, an agile team will start the day off with a
short stand-up meeting, followed by a three to four hour focussed session
of uninterrupted development. They may then break for lunch, followed by
yet another focussed session. During these focussed sessions the developers
are typically prohibited from using telephones, e-mail, IRC or any form of
external communication, both inbound and outbound. In contrast the OSSD
style requires almost constant access to communication media such as e-mail,

www.manaraa.com

90 M. Theunissen, D. Kourie, and A. Boake

IRC and the Web. These media, which facilitate 24/7 flow of information
will seem extremely ‘noisy’4 to developers accustomed to the agile style.

An added problem is the need to translate and transmit the verbal com-
munication between co-located developers to other distributed external de-
velopers. This need to continually document and electronically broadcast the
typically informal verbal communication between agile developers may prove
to be a severe obstacle in the quest for synergy between ASD and OSSD.

– Relinquishing of control
Agile developers are accustomed to having a large say in the decision making
processes that control the direction of a project and the development style
and culture within the project. However, when the team is simply yet an-
other contributor in a larger community of developers, some of this control
(possibly over many aspects of the project) may be lost. This could be a
disturbing prospect for ASD developers and should be taken into account
when the team interacts with the larger OSS community.

The view on time-schedules is related to this control issue. Agile propo-
nents advocate fixed, (though short) time cycles to illustrate their progress to
the client and to verify the appropriateness of the evolving system. Although
the OSS culture is also to deliver frequently, the inclination is to only deliver
when the deliverables are useful and stable. This difference perhaps has its
roots in the different drivers present in the two approaches. The primary
driver in ASD can be seen to be frequent business deadline-driven releases.
On the other hand, the primary driver in OSS is delivery of quality software
to the community of developer/users.

– Good OSS community citizenship
Agile developers need to realise that they are no longer the centre point of the
development effort, but part of a larger community of developers with a deeply
rooted culture—largely based on the Unix culture [10]—that has been around
for a number of decades. Agile developers will therefore have to gain an un-
derstanding of the OSS culture to ensure that they adhere to the underlying,
sometimes unwritten, rules of participating in the OSS community.

These points indicate that agile subcultures within parts of the corporate struc-
ture would need to adapt if OSSD is introduced into that structure. Indeed, it
would seem necessary to compromise on some fundamental agile principles. Ac-
cepting these compromises may be a significant test of the very claim made by
agile community, namely of being pre-eminently open to change and adaptation.

Of course, the extent to which the above comes into play in a specific project
is dependent on the level of engagement between the agile team and the OSS
project5. An example would be where the development team is responsible for
4 Although ASD sessions may often be ‘noisy’ in sense of frequent discussion, the

discussions tend to be focussed on immediate tasks at hand. OSSD interruptions, on
the other hand, tend to be disparate and less focussed.

5 These levels of engagement could be: simply using an OSS product; modifying with-
out sharing the OSS product; actively contributing to an OSS project; or managing
an OSS project.

www.manaraa.com

Corporate-, Agile- and Open Source Software Development 91

developing an intranet application that uses the Tomcat server and contributes
to the MyFaces library. In the aforementioned example one would expect that
the tension-points arising in regard to the Tomcat project will be somewhat
different to those experienced in regard to the MyFaces project.

The foregoing, largely a further elaboration of ideas first mooted in [8], does
not purported to be an exhaustive list of possible adaptations that need to be
addressed in order to gain synergy between agile on the one hand and OSS on
the other. It is merely the starting point for a deeper analysis of the contention
points and ways of reconciling them.

4 An Illustrative Example

The preceding sections have highlighted the need to take the tension-points
into consideration when defining a process for a project that intends to com-
bine OSSD and ASD. Clearly, many problems can be solved by amending the
development process(es). However, the ability to adjust the development pro-
cess depends on the control that one has over the project. Furthermore, the
adjustments to the process will be based on the perspective of the team under
consideration.

To illustrate the point, consider the following fictitious example: Team Bravo
is assigned to develop a conference-room booking system, to be deployed on the
intranet of the team’s organisation. For the development, team members have
decided to use Tomcat, MyFaces, Hibernate, MySQL and GNU Linux. In addi-
tion, they use Eclipse and Subclipse as development tools. During the course of
the project the team extends MyFaces with additional components and submits
these to the MyFaces project. Additionally, a bug is discovered within Subclipse
and a bug report is filed with the Subclipse project, this report containing a
JUnit test-case to illustrate the problem. Later on, the Subclipse-bug is classi-
fied as impeding the project and a patch to correct the problem is developed
and submitted.

The Subclipse project has a predefined process for submitting bug reports.
In addition, good project management requires that Team Bravo, too, should
follow some internally defined sub-process in submitting a bug report. Clearly,
the latter sub-process needs to interface to the Subclipse one. A similar situation
would hold in the contribution of additional components to the MyFaces project.

Figure 2(a) depicts the process specified by the Subclipse project-page [11] for
submitting an issue into their issue tracker. The notation used is the Software
Process Engineering Metamodel (SPEM) version 1.1 [12]. The aforementioned
figure represents an Activity diagram to describe the specific Work Definition6.
The Activities7: Read On-line Help, Read Subversion Book and Read FAQ
6 “Work Definition: A Model Element of a process describing the execution, the op-

erations performed, and the transformations enacted on the Work Products by the
roles. Activity, Iteration, Phase, and Lifecycle are kinds of work definition” [12].

7 “A Work Definition describing what a Process Role performs. Activities are the main
element of work” [12].

www.manaraa.com

92 M. Theunissen, D. Kourie, and A. Boake

U
se

r
<<

O
b

se
rv

er
>>

Is
su

e
T

ra
ck

er

E
n

tr
y

{n
ew

}

R
ea

d
 O

n
-l

in
e

H
el

p

R
ea

d

S
u

b
ve

rs
io

n

B
o

o
k

S
ea

rc
h

E

xi
st

in
g

 Is
su

es

R
ep

o
rt

 P
ro

b
le

m

to
 U

se
r

M
ai

lin
g

-
lis

t

R
ea

d
 F

A
Q

C
re

at
e

N
ew

Is

su
e

R
eg

is
te

r
as

 a
n

O

b
se

rv
er

 R
o

le

to
 P

ro
je

ct

Is
 a

 R
eg

is
te

re
d

P
ro

je
ct

 M
em

be
r

N
ew

 Is
su

e
N

ee
de

d

N
o

Y
es

(a
)

W
o
rk

d
efi

n
it
io

n
fo

r
C

re
a
ti
n
g

a
N

ew
Is

su
e

T
ra

ck
er

E
n
tr

y
in

S
u
b
cl

ip
se

D
ev

el
o

p
er

W
ri

te
 T

es
t

F
ix

 C
o

d
e

R
u

n
 T

es
ts

G
en

er
at

e
P

at
ch

T
es

ts
 P

as
se

d

N
ee

d
A

no
th

er
 T

es
t

P
at

ch

T
o

Ill
us

tr
at

e
B

ug

S
u

b
m

it
 T

es
ts

an

d
 P

at
ch

 t
o

O

ri
g

in
al

 P
ro

je
ct

T
es

tC
as

e

Y
es

N
o

N
o

Y
es

(b
)

W
o
rk

d
efi

n
it
io

n
fo

r
R

es
o
lv

in
g

B
u
g

in
3
rd

p
a
rt

y
li
-

b
ra

ry

F
ig

.
2
.
Il
lu

st
ra

ti
v
e

W
o
rk

d
efi

n
it
io

n
s

www.manaraa.com

Corporate-, Agile- and Open Source Software Development 93

require that a user should first refer to the existing documentation for possi-
ble descriptions on how to resolve the problem that they are experiencing. If
these activities are deemed unsuccessful, then the user should search the exist-
ing issues in the Issue Tracker database. If this, in turn, is also unsuccessful,
then the user should report the problem to the Users mailing-list.

The Subclipse project requires the aforementioned activities as a filtering
mechanism to reduce unnecessary entries in the issue-tracker. If need be, the
user mailing-list will direct the user to file an entry in the issue-tracker. Em-
bedded in the figure is another work definition: Register as an Observer Role to
Project. This refers to the additional activities that are required when the user
is not yet registered with the project. In the same way Report Problem to User
Mailing-list encompasses the process of interacting on the user mailing-list.

The internal process that Team Bravo has to follow to resolve the bug is
illustrated in Figure 2(b). The figure indicates that Team Bravo uses a test-
driven approach to write the bug-fix, as required by their ASD-compliant de-
velopment process. Submit Patch to Original Project represents an abstract
sub-process to follow when reporting the problem and providing a solution to
a 3rd party’s project. In the above example the abstract sub-process should be
superseded by the Subclipse: Creating a New Issue Tracker Entry process speci-
fied in Figure 2(a) and described above. In this way, the general project process
can be customised to incorporate interfaces to other projects.

The foregoing endorses the notion of defining a process per project, as advo-
cated by a number of methodologists, including Cockburn [13]. In the case of the
conference-room booking system project, not only did the overall process depend
on the project’s internal sub-processes, but it also had to take account of the sub-
processes of other external projects. In practice, the set of external projects to be
incorporated may vary from one project to the next. This is evidently a typical
consequence of incorporating an OSSD approach into a corporate development
effort.

5 Proposals

The previous section gave a practical example of the kind of inter-project inter-
action scenario which a corporate development team incorporating OSSD could
face. Numerous additional illustrative examples and scenarios could no doubt
be cited. However, the present limited example already introduces a number of
ideas that lead to concrete proposals for dealing with these tensions.

1. Note that, in general, there will be interaction points between sub-processes
of the internal project and sub-processes of the various external (OSS)
projects. The tensions previously mentioned, i.e. tensions between OSSD
and ASD and/or traditional corporate culture, are most likely to be encoun-
tered at these interaction points. It would seem, therefore, that one can at
least start to deal with these tensions, by articulating—either formally or
informally—a sub-process at each such interaction point.

www.manaraa.com

94 M. Theunissen, D. Kourie, and A. Boake

Taking this approach, one is able to specify the corporate development
process with minimal (but non-zero) concern for the external projects pro-
cess. The external projects processes are then only plug-ins that are realised
in one’s own process on an “as-needed” basis. This contains the tensions
between the different, possibly opposing processes and encapsulates them at
the defined interface points.

2. Another possible practice to consider, is the introduction of an additional
role to the development process: that of a liaison officer. This role should
be adopted whenever one either uses or contributes to an OSS project. In
essence, someone would be designated as responsible for acting as a commu-
nication conduit between the projects. The responsibility of this role would
be to gain and maintain an appropriate level of understanding of an external
project with regard to the respective processes and the evolution of the ar-
tifacts. This knowledge would then be disseminated to the rest of the team,
as required by the given project.

An example of this would be assigning developer Jane to liaise on project
Subclipse on the team’s behalf. Whenever a new release is available, she will
inform the rest of the team and aid with the adoption thereof by the team.
This role might be seen as a substitute for the product representative from
commercial companies from which software product are acquired.

Furthermore, when deemed necessary, the role may be assigned to multiple
persons, for example, on a per module basis for large external projects. The
need to assign this responsibility to multiple persons may be particularly
important in a context where an ASD approach such as Extreme Program-
ming is being used, since the latter places emphasis on maintaining a level
of human redundancy.

The role of liaison officer would vary for each given project and for each
external project, its importance being determined by factors such as those
listed in the previous section.

6 Conclusion and Future Work

The implications of introducing OSSD into a corporate environment have been
considered, and particular references has been made to the implications of ac-
commodating both OSSD and ASD. An example illustrated the kind of situation
facing corporate software developers who attempt to develop in an ASD style
while collaborating with distributed partners.

In the example, the focus of the development team was to use OSS products.
However, had the ASD team formed all or part of the core of an OSS project,
then a number of other issues would need to be addressed. These have not
been considered here, and are left for future study. However, it is clear that the
process-per-project notion will feature strongly in any such consideration.

Clearly, when mixing in different ingredients from the software development
processes and/or practices on offer, it would be wise to be weary about the
resulting brew. It could turn out to poison or paralyse the project. On the other
hand, it might be a elixir—an enabler of a successful and enduring project.

www.manaraa.com

Corporate-, Agile- and Open Source Software Development 95

References

1. Dinkelacker, J., Garg, P.K., Miller, R., Nelson, D.: Progressive open source. Tech-
nical Report HPL-2001-233, Hewlette-Packard Laboratories, Palo Alto (2001)

2. Raymond, E.S.: The cathedral and the bazaar. First Monday (1998) (Accessed:
2007/06/27),
http://www.firstmonday.org/issues/issue3 3/raymond/index.html

3. Rosen, L.: Open Source Licensing: Software Freedom and Intellectual Property
Law. Prentice Hall Professional Technical Reference (2005)

4. Free Software Foundation: Frequently asked questions about the GNU GPL (2006)
(Accessed: 2007/06/27), http://www.gnu.org/licenses/gpl-faq.html

5. Raymond, E.S.: Discovering the obvious: Hacking and refactoring. Weblog entry
(2003) (Accessed: 2007/06/27),
http://www.artima.com/weblogs/viewpost.jsp?thread=5342

6. Feller, J., Fitzgerald, B.: Understanding Open Source Software Development.
Addison-Wesley, Reading (2002)

7. Cunningham, W.: Manifesto for Agile Software Development (2001)(Accessed:
2007/06/27), http://www.agilemanifesto.org

8. Theunissen, W., Boake, A., Kourie, D.: Open source and agile software develop-
ment in corporates: A contradiction or an opportunity? Jacquard Conference, Zeist,
Holland (2005)

9. Warsta, J., Abrahamsson, P.: Is open source software development essentially an
agile method? In: Proceedings of the 3rd Workshop on Open Source Software
Engineering, 25th International Conference on Software Engineering, Portland,
Oregon, USA, pp. 143–147 (2003)

10. Raymond, E.S.: The Art of Unix Programming. Addison-Wesley, Reading (2003)
11. Subclipse Project Team: Subclipse issue tracker (2006) (Accessed: 2007/06/27),

http://subclipse.tigris.org/project issues.html

12. Object Management Group: Software process engineering metamodel specification.
formal 05-01-06, Object Management Group (2005)

13. Cockburn, A.: Agile Software Development. Pearson Education, Inc., London
(2002)

http://www.firstmonday.org/issues/issue3_3/raymond/index.html
http://www.gnu.org/licenses/gpl-faq.html
http://www.artima.com/weblogs/viewpost.jsp?thread=5342
http://www.agilemanifesto.org
http://subclipse.tigris.org/project_issues.html

www.manaraa.com

Capable Leader and Skilled and Motivated Team

Practices to Introduce eXtreme Programming

Lech Madeyski1 and Wojciech Biela2

1 Institute of Applied Informatics, Wroclaw University of Technology,
Wybrzeze Wyspianskiego 27, 50370 Wroclaw, Poland

Lech.Madeyski@pwr.wroc.pl

http://madeyski.e-informatyka.pl/
2 ExOrigo Sp. z o.o., Krucza 50, 00025 Warsaw, Poland

Wojciech.Biela@exorigo.pl

http://www.biela.pl

Abstract. Applying changes to software engineering processes in or-
ganisations usually raises many problems of varying nature. Basing on
a real-world 2-year project and a simultaneous process change initiative
in Poland the authors studied those problems, their context, and the
outcome. The reflection was a need for a set of principles and practices
to help introduce eXtreme Programming (XP). In the paper the authors
extend their preliminary set, consisting of the Empirical Evidence princi-
ple, exemplified using DICE R©, and the practice of the Joint Engagement
of management and the developers. This preliminary collection is being
supplemented with the Capable Leader, as well as the Skilled and Moti-
vated Team practices based on the DICE R© framework as well.

Keywords: Extreme programming, Agile adoption, Process change,
Software process improvement, DICE R© framework.

1 Background

The paper is based on a real-world software project and the attempt to bring agile
practices to that project and organisation. The organisation is a medium-sized
company that operates in several distant locations in Poland. The study relates
to a 2-year project developed by 3 programmers (the whole team consisted of
8 programmers). The goal of that project was a B2C web platform for a trust
fund agent.

One of the authors joined the team, after a year from the project start, to
resolve various issues that arose in the development environment. At that time,
his only knowledge and experience concerning agile practices came from the
e-Informatyka project led by the co-author, their long discussions and of-the-
books knowledge. The problems were addressed using a collection of agile
techniques.

Test-Driven Development (TDD) was something new and was a complete suc-
cess. The recognised overhead in writing tests was compensated by the decrease

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 96–102, 2008.
c© IFIP International Federation for Information Processing 2008

www.manaraa.com

Capable Leader and Skilled and Motivated Team Practices to Introduce XP 97

in the bug rate (which is in line with [1]) and the ability to refactor the system
quickly. It was not without resistance and a lot of coaching was necessary, but
eventually developers found TDD to be very effective and rewarding.

Refactoring was used in the past, but not that explicitly and often. Without do-
ing regular refactorings (while having unit tests in place), many change requests
from the client would have met very strong resistance from the team and would
have caused a lot more pain.

Pair Programming (PP) was introduced at some point and it really helped the
team to share knowledge and halve the time of introducing a new person to
the project. Developers realized that PP also helped produce better code in
terms of design quality and the number of bugs discovered later. However, not
all of the empirical studies [2,3,4,5,6,7,8] support the positive impact of PP
on software quality, as was observed by the team. Substantial problems arose
when the consequences of pairing - higher costs - were exposed to the client. On
the basis of several empirical studies [9,10,11,12,13,6], one may conclude that
pair programming effort overhead is probably somewhere between 7% and 84%,
whilst the team’s observation was close to a 50% overhead.

In-process design sessions required a lot of coaching and basic programming
recommendations [14] were introduced. More advanced principles like Separation
of Concerns and Dependency Injection were introduced as well. There was some
resistance in this matter as with TDD. But the return on investment in this case
was usually very high, so discussions on this were swift.

Problem Decomposition was, alongside TDD, the most successful technique
brought to the team. Divide the problems into pieces that you can grab, solve
the problems (estimate, plan, design or code, whatever the case), and get back to
the whole. Whether used at the release planning level or at the implementation
detail level, it performed brilliantly.

Continuous Integration and task automation was an obvious benefit, the team
saved many hours of dull deployment work. Also many man-made mistakes were
omitted due to task automation.

Darts were something completely new, but this great incentive ultimately glued
the team together. People started talking to each other. They suddenly had
another motivation to complete their tasks (they could have a game). Addition-
ally it provided yet another reason, other than the biological one mentioned by
Beck [15], to take your eyes off the computer screen, get up, and clear your head.
Eventually, the management accepted it (and had a game themselves). In the
authors’ opinion, such group toys are a must have for any development team.

Communication was and still is an issue because the team is remote. A wiki was
set up, which helped a lot. Direct communication with the customer was encour-
aged. A conference area was set up, with Skype installed. Much of the outdated
documentation was disregarded, instead user stories were recorded for further

www.manaraa.com

98 L. Madeyski and W. Biela

discussions. This also met resistance, as the customer was in the habit of doing
things the traditional way.

The preliminary results, emphasising the need for a concrete set of principles
and practices that would complement the main body of eXtreme Programming
(XP) and support the fragile process of introducing XP practices, have been pre-
sented and discussed within the agile community [16]. These results consisted
of an agile principle (Empirical Evidence) and practice (Joint Engagement)
proposal to aid the process change. The Empirical Evidence principle recom-
mends to ground on empirical evidence when introducing changes. One of the
widely accepted sources of empirical evidence concerning introducing changes is
the DICE R© framework [17], created by The Boston Consulting Group. However,
other sources of empirical evidence are welcome as well. The Joint Engagement
practice is guided by the Empirical Evidence, as well as the Accepted Responsibil-
ity principle [18]. Following the Joint Engagement practice we begin the change
process at various structural levels of an organisation [16]. This preliminary set
of principles and practices will be further extended in the next section.

2 Keep the DICE R© Rolling

The DICE R© framework is a simple empirical evidence-based formula, based on
225 change initiatives study, for calculating how well an organisation is or will
be implementing its change initiatives [17]. The DICE R© framework comprises
a set of simple questions that help score projects on each of the five factors:
project duration (D), team’s integrity (I), commitment of managers (C1) as well
as the team (C2), and additional effort (E) required by the change process. Each
factor is on a scale from 1 to 4. The lower the score, the better. Thus, a score of
1 suggests that the factor is highly likely to contribute to the program’s success,
and a score of 4 means that it is highly unlikely to contribute to the success [17].
In DICE R©, a project with an overall score between 7 and 14 is considered a
Win, between 14 and 17 is a Worry and between 17 and 28 is a Woe. The
DICE R© formula is D+2∗I+2∗C1+C2+E.

The authors used the DICE R© and its C1 and C2 factors previously when
proposing the Empirical Evidence principle and Joint Engagement practice
duo [16]. The project team’s performance integrity factor (I) concerns the abil-
ity to complete the process change initiative on time and depends on the team
members’ skills. According to Sirkin et al. [17]:

If the project team is led by a highly capable leader who is respected
by peers, if the members have the skills and motivation to complete the
project in the stipulated time frame, and if the company has assigned
at least 50% of the team members’ time to the project, you can give the
project 1 point. If the team is lacking on all those dimensions, you should
award the project 4 points. If the team’s capabilities are somewhere in
between, assign the project 2 or 3 points.

Building upon the Empirical Evidence principle and the DICE R© framework the
authors recognise that the project team’s performance integrity factor (I) may

www.manaraa.com

Capable Leader and Skilled and Motivated Team Practices to Introduce XP 99

lead to two new practices: the Capable Leader and the Skilled and Motivated
Team practices. Following those practices one improves their DICE R© integrity
(I) factor and thus increases the likelihood of success. These practices are clearly
in line with the Improvement principle [6] from XP. Furthermore, other XP
principles like Diversity, Flow, Quality, Accepted Responsibility [18] are closely
related to the ideas behind those practices.

2.1 Capable Leader

This practice proposal turns the attention to the role of the team leader. It
may concern both the project’s development team leader responsible for imple-
menting the development practices in a project, as well as the leader for the
organisational change process which happens throughout the organisation will-
ing to adopt agile practices.

In the adoption of agile practices the role of the team leader is very significant.
New ideas and enthusiasm often die on its own. Things get back to where they
were before and the chance for a process change is inadvertently lost, as the same
organisation will probably not want to try it twice. There needs to be a person
who will advocate for the change, explain and remove obstacles. The project
team should be led by a highly capable and motivated leader who is respected
by his peers. The team leader should serve the team, never the opposite. On
a daily basis he is not a manager, but like the Scrum Master in Scrum [20],
rather a normal team member, who has to put on different hats according to
the current needs of the team. One time he needs a coach’s hat, afterwards he
takes out a developer’s hat, next minute a manager’s hat, then again a team
catalyst’s hat or maybe an agile evangelist’s hat. His ultimate role is to help the
team improve, not force them to improve, but rather enable them to do it on a
daily basis. But be aware that the team leader cannot make the team dependent
on his person, among other problems that would simply cause the Truck Factor
to go down dramatically. Contrary, if the team lead should leave the team for a
week, nothing dramatic should happen.

Both the team and the team leader need specific resources to be assigned for
the change process. For example if they do not have enough time and opportu-
nities to roll out the changes then no amount of wisdom nor tooling will help.
Other than that there is no fixed set of resources they need, the whole team
together has to identify their requirements.

2.2 Skilled and Motivated Team

This practice in turn focuses on the need to grow a team of motivated profes-
sionals and care for them. The major problem is the difference between a team
and a work-group and how to help a work-group become a team. Again, this
may concern the team of developers implementing a product or more broadly
the entire team of the individuals responsible for the change process.

It is quite obvious that skilled professionals are more effective than the weaker
ones, but the point is to explicitly aim for having the best people on board. One

www.manaraa.com

100 L. Madeyski and W. Biela

should not stop there, because very talented individuals often don’t work well to-
gether, this is why this practice focuses on teams rather than individuals. The peo-
ple forming such a team need to be motivated to effectively work towards common
goals. That is what differentiates them from a work-group of clever masterminds
working alone in the same room (often barely talking to each other). Agile pro-
cesses adoption is no exception from that rule. It is good to form the team in such
a way that it has a critical mass of agile believers and practitioners. Then one needs
to help them work together making heavy usage of team retrospectives [19]. Act,
inspect and adapt. If it is not possible to change the crew, then coach them exten-
sively, and make even more use of retrospectives.

Following the proposed practices helps to assure the highest capability, skills
and motivation of both the team leader and the team members. It means that we
do our best to have the project team led by a competent and motivated individual
who is respected by his peers. Moreover, it is best when the team members have
the skills and motivation to complete the project in the accepted time frame [17].
To achieve these aims the organisation has to assign a reasonable part of the team
members’ time to the change process. Among other activities that would have an
impact on the team’s integrity factor are e.g. assuring an appropriate degree of
financial support, emphasising the understanding of the potential contribution
of the change process to the situation of the team, or a particular team member.
Individuals at the management and at the developer level should be educated
and involved in the process (Joint Engagement practice [16]). They have to
willingly accept their diverse responsibilities in the change process (Accepted
Responsibility principle [18]). The current form of the proposed collection of
principles and practices to introduce XP, against a background of the main
body of XP, is presented in the Figure 1.

Fig. 1. The set of principles and practices to introduce XP against a background of
the main body of XP

www.manaraa.com

Capable Leader and Skilled and Motivated Team Practices to Introduce XP 101

3 Conclusions

Introducing agile practices is a challenge for every organisation. In the search
for methods that would ease the adoption process, the authors began to identify
principles and practices to introduce XP [16]. In the paper they identified further
two potential practices based on the Empirical Evidence principle: the Capable
Leader and the Skilled and Motivated Team practices. Such practices might not
be very surprising for some. However, as the history of XP shows certainly there
is value in labelling and arranging well-known behaviours into such concrete
forms of values, principles and practices specifically aimed at solving a concrete
problem. Those two practices work best when applied together, because of a
synergy effect, as in the case of many other XP practices. The team leader can
be more effective with a motivated team, while the team lead by a competent and
smart individual will also do much better. This close relation is also emphasised
by the integrity (I) factor of the DICE R© framework.

Other agile practitioners are highly encouraged to contribute to this presented
set of principles and practices to cover more and more of this unstable ground,
as well as to empirically evaluate the ideas in different contexts.

Acknowledgements

The authors expresses their gratitude to the agile community for their feedback
concerning the proposed collection of principles and practices. This work has
been financially supported by the Ministry of Science and Higher Education, as
a research grant 3 T11C 061 30 (years 2006-2007).

References

1. Williams, L., Maximilien, E.M., Vouk, M.: Test-Driven Development as a Defect-
Reduction Practice. In: ISSRE 2003: Proceedings of the 14th International Sympo-
sium on Software Reliability Engineering, Washington, DC, USA, pp. 34–48. IEEE
Computer Society, Los Alamitos (2003)

2. Müller, M.M.: Are Reviews an Alternative to Pair Programming? Empirical Soft-
ware Engineering 9(4), 335–351 (2004)

3. Madeyski, L.: Preliminary Analysis of the Effects of Pair Programming and Test-
Driven Development on the External Code Quality. In: Zieliński, K., Szmuc, T.
(eds.) Software Engineering: Evolution and Emerging Technologies. Frontiers in
Artificial Intelligence and Applications, vol. 130, pp. 113–123. IOS Press, Amster-
dam (2005)

4. Madeyski, L.: The Impact of Pair Programming and Test-Driven Development on
Package Dependencies in Object-Oriented Design - An Experiment. In: Münch,
J., Vierimaa, M. (eds.) PROFES 2006. LNCS, vol. 4034, pp. 278–289. Springer,
Heidelberg (2006)

5. Hulkko, H., Abrahamsson, P.: A Multiple Case Study on the Impact of Pair Pro-
gramming on Product Quality. In: ICSE 2005: Proceedings of the 27th International
Conference on Software Engineering, pp. 495–504. ACM Press, New York (2005)

www.manaraa.com

102 L. Madeyski and W. Biela

6. Arisholm, E., Gallis, H., Dyb̊a, T., Sjøberg, D.I.K.: Evaluating Pair Programming
with Respect to System Complexity and Programmer Expertise. IEEE Transac-
tions on Software Engineering 33(2), 65–86 (2007)

7. Madeyski, L.: On the Effects of Pair Programming on Thoroughness and Fault-
Finding Effectiveness of Unit Tests. In: Münch, J., Abrahamsson, P. (eds.)
PROFES 2007. LNCS, vol. 4589, pp. 207–221. Springer, Heidelberg (2007)

8. Madeyski, L.: Impact of pair programming on thoroughness and fault detection
effectiveness of unit test suites. Software Process: Improvement and Practice (ac-
cepted), DOI: 10.1002/spip.382

9. Nosek, J.T.: The Case for Collaborative Programming. Communications of the
ACM 41(3), 105–108 (1998)

10. Williams, L., Kessler, R.R., Cunningham, W., Jeffries, R.: Strengthening the Case
for Pair Programming. IEEE Software 17(4), 19–25 (2000)

11. Nawrocki, J.R., Wojciechowski, A.: Experimental Evaluation of Pair Programming.
In: ESCOM 2001: European Software Control and Metrics, London, pp. 269–276
(2001)

12. Müller, M.M.: Two controlled experiments concerning the comparison of pair pro-
gramming to peer review. Journal of Systems and Software 78(2), 166–179 (2005)

13. Nawrocki, J.R., Jasiński, M., Olek, L., Lange, B.: Pair Programming vs. Side-
by-Side Programming. In: Richardson, I., Abrahamsson, P., Messnarz, R. (eds.)
EuroSPI 2005. LNCS, vol. 3792, pp. 28–38. Springer, Heidelberg (2005)

14. Bloch, J.: Effective Java: Programming Language Guide. Addison-Wesley, Reading
(2001)

15. Beck, K.: Test Driven Development: By Example. Addison-Wesley, Reading (2002)
16. Madeyski, L., Biela, W.: Empirical Evidence Principle and Joint Engagement Prac-

tice to Introduce XP. In: Concas, G., Damiani, E., Scotto, M., Succi, G. (eds.) XP
2007. LNCS, vol. 4536, pp. 141–144. Springer, Heidelberg (2007)

17. Sirkin, H.L., Keenan, P., Jackson, A.: The Hard Side of Change Management.
Harvard Business Review 83(10), 108–118 (2005)

18. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd
edn. Addison-Wesley, Reading (2004)

19. Derby, E., Larsen, D.: Agile Retrospectives: Making Good Teams Great. Pragmatic
Bookshelf (2006)

20. Schwaber, K., Beedle, M.: Agile Software Development with SCRUM. Prentice
Hall, Englewood Cliffs (2001)

www.manaraa.com

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 103–115, 2008.
© IFIP International Federation for Information Processing 2008

Platform-Independent Programming of Data-Intensive
Applications Using UML∗

Grzegorz Falda1, Piotr Habela1, Krzysztof Kaczmarski2, Krzysztof Stencel3,
and Kazimierz Subieta1

1 Polish-Japanese Institute of Information Technology, Warsaw, Poland
2 Faculty of Mathematics and Information Science,

Warsaw University of Technology, Warsaw, Poland
3 Institute of Informatics Warsaw University, Warsaw, Poland

{gfalda,habela,stencel,subieta}@pjwstk.edu.pl,
K.Kaczmarski@mini.pw.edu.pl

Abstract. The shift of development effort onto the model level, as postulated
by MDA, provides an opportunity for establishing a set of modelling constructs
that are more intuitive and homogeneous than its platform-specific counterparts.
In the paper UML is confronted with the needs specific for data-intensive appli-
cations and propose a seamlessly integrated platform-independent language
with powerful querying capability, which would allow specifying a complete
application behaviour. The proposal is aimed at high level of compliance with
existing modelling standards – as such it is based on UML behavioural
elements and on OCL for expressions. The motivation behind this approach is
presented, the challenges implied by it are discussed, and the role of the model
runtime implementation is indicated.

Keywords: UML, executable modelling, query language, action language,
MDA, database applications.

1 Introduction

The approach of model-driven software development and the Model Driven Architec-
ture (MDA) initiative in particular sketch the vision of the next big step in raising the
level of abstraction and flexibility of programming tools. While any method that treats
modelling activities as central can be considered “model-driven”, the key expectation
behind MDA is achieving a productivity gain through the automating of software
construction based on models. This results in a significant shift of expectations re-
garding modelling constructs – from being merely a semi-formal mean for outlining
and communicating project ideas, to machine-readable specification demanding pre-
cise semantics. Thus, MDA creates a spectrum of model applications, which is often
described using the following three categories:

∗ This work is supported by the European Commission 6-th Framework Programme, Project

VIDE - VIsualize all moDel drivEn programming, IST-033606-STP.

www.manaraa.com

104 G. Falda et al.

• Sketches, that represent the traditional use of UML and similar language as a help
in understanding the problem and communicating ideas and solutions to other de-
velopers. Those kinds of models do not need to be complete nor fully formalized.

• Blueprints, that follow the traditional distinction between design and its realization
– as in case of other engineering domains. The distinction of design and coding is
maintained in terms of artifacts and is also reflected in assignment of those tasks to
different groups of developers.

• Executable models, that require the presence of precise semantics and – by the
automation of executable code production – blur the distinction between modelling
and programming.

The last case is especially connected with the MDA initiative of the Object Manage-
ment Group and has motivated significant restructuring and extension of the UML
standard as experienced in its version 2 [1]. The most far-reaching variant of this
vision is to replace existing programming languages with platform-independent mod-
elling languages in majority of applications [2] (the same way the former once
replaced assembly languages). This requires the presence of sophisticated transforma-
tion tools encapsulating the knowledge on particular target platform technologies, and
depending on mature and widely adopted modelling standards – at least at the Plat-
form Independent Model (PIM) level. In that case the application code produced
would not be the subject of direct editing at all. The amount of work at the Platform
Specific Model (PSM) level could also be reduced to minimum.

That vision is inherently challenging due to the transformations between heteroge-
neous high level languages involved (especially – if multi-tiered software and data
processing are considered). This is probably why the idea of so highly automated
MDA has not been extensively applied to the business applications so far [3]. At the
same time, however, applying strict MDA to that area seems especially compelling
given the uniformity and reuse it could potentially provide there. This idea underlies
the development of our platform-independent language aimed at the data-intense
business application area, which is being created as one of the central elements of our
project of visual modelling toolset VIDE (Visualize all model-driven programming).

In the paper we describe our approach to that problem, which is based on the
following postulates:

• UML Structures unit seems to be rich and versatile enough to be considered as a
foundation for a data model used in platform-independent development. A number
of semantic details needs to be clarified to achieve that aim though.

• To make the model complete, the means of imperative programming need to be
available at the PIM level. To raise the intuitiveness and productivity compared to
the mainstream platform-specific technologies, the statements and queries should
be integrated into a single language in a truly seamless way.

• An execution engine for PIMs is needed as a reference implementation. It is also es-
sential as a modelling tool component serving for platform-neutral model validation.

• Representing an application code in the form of standard metamodel instances and
flexibly combining textual and visual notations for the behavioural modelling of
introduced constructs can provide a significant advantages over plain, purely
textual languages.

www.manaraa.com

 Platform-Independent Programming of Data-Intensive Applications Using UML 105

The rest of the paper is organized as follows. Section 2 describes the expectations and
concerns regarding the executable modelling approach and explains the motivation
behind our approach. In Section 3 the UML 2 standard is presented from the point of
view of precise specification of data-intensive applications. Section 4 describes the
idea of a UML-based programming and query language and summarizes the current
results in its development. In Section 5 we outline the role of the language within a
broader toolset and development process and indicate further challenges. Section 6
concludes the paper.

2 Motivation

This should not be a surprise that pragmatic approaches to the problem outlined may
depend on the programming notions known from existing programming and database
languages. Specifying just a structural aspect of the model (using e.g. UML Class
diagrams) is not sufficient if a high degree of code generation is the aim. Delegating
the details of the behaviour specification to constraint definitions – as explained
e.g. in [4] has the quality of the higher level of abstraction. However, realizing behav-
ioural modelling this way in general is problematic from the point of view of com-
plexity of model transformations. Moreover, in case of more complex behaviour this
could be highly complicated and hard to accept by developers who are familiar with
the traditional, imperative style of specification. Even at the side of imperative pro-
gramming there is a dilemma regarding the selection of particular modelling notions
to be supported in the executable models. What needs to be balanced is the ease of
translation into other languages and making the language familiar for the developers
knowing mainstream platform-specific languages, against the aim of achieving a
higher level of abstraction and hiding the heterogeneity of type systems and pro-
gramming paradigms.

When speaking about the current modelling standards (especially UML2 [1],
MOF2 [5] and OCL2 [6]) and their development towards the vision of executable model-
ling, it is necessary to mention the critique this vision of model driven development faces
– see e.g. [7]. While its motivation of raising the level of abstraction and controlling the
level of details is recognised, the overall approach to dealing with complexity is consid-
ered problematic. A question of maintainability given the number of model representa-
tions is raised. There is even a doubt expressed if the MDA does not just push the
complexity into later phases of the development process instead of reducing it (as the
round-trip engineering requiring translation of lower-level notions into a higher level of
abstraction is problematic). The size of the current UML specification is a concern, Espe-
cially, given that some areas essential for business applications are missing or weakly
addressed there. This includes for example user interface specification, workflow/
business process definition and data modelling. Moreover, the techniques that could
support the stakeholders’ involvement into the development process are also found miss-
ing from the language and not much visible in MDA in general [8]. The demand for a
reference implementation and a human-readable operational semantics is emphasized –
also for assuring the proper implementation of UML transformation tools [9].

www.manaraa.com

106 G. Falda et al.

There are also varying opinions on the role and usefulness of visual programming
at the level of detail suggested by UML Actions and Activities units. In [8] an
observation is made that most developers prefer text-based solutions for modelling and
the focus of many tool vendors on diagram-based solutions is questioned. Fowler [10]
and several other practitioners express concerns about visual programming as they indi-
cate the diagrammatic way of code construction is incomparably slower. Indeed, major-
ity of action languages in existence today [11, 12] are purely textual. However, if the
difficulties related with visual coding at this level of granularity could be overcome, the
visual notation may be advantageous under the following criteria:

• More control of the editing process, giving the possibility to assist the developer
and to avoid some coding errors,

• More expressive distinction of different language constructs,
• Ability to more clearly visualize scopes and name visibilities – especially for com-

plex expressions,
• Ability to incorporate domain specific user-defined symbols to make the code

easier to follow e.g. during the validation by the domain experts.
• More potential for annotation and substitution texts / symbols use.

Given the above considerations and the implementation and transformation issues
explained later, we chose to build the core of our VIDE language (called VIDE-L in
the sequel) on the notions known from programming languages (expressed in terms of
UML Actions and Structured Activities) rather than starting from flow-oriented activ-
ity models, state machines [11] or interactions. While this approach can be considered
conservative from the point of view of the modellers’ community, we note the follow-
ing advantages compared to traditional programming languages:

• Depending on executable semantics for UML and the data model it assumes to
support its adoption as a canonical model for various modelling and integration
efforts.

• Capability of avoiding the “impedance mismatch” existing between database and
programming languages in mainstream platform-specific technologies.

• Flexibility of code composition, validation, transformation and annotation gained
through its representation in the model repository.

• Ease of switching syntactic options to offer an optimum combination of visual and
textual notation for making the coding intuitive and productive for developers who
know UML.

3 Standard Base

What makes the UML a natural choice of a standard’s base for the intended language
is the popularity of the standard and its recent restructuring aimed precisely towards
the executable modelling paradigm. Another fact that strengthens the position of this
standard is recent development of the modelling tool implementation framework
based on the UML 2.x metamodel [13], which may support uniform handling and
exchange of UML models among various tools.

www.manaraa.com

 Platform-Independent Programming of Data-Intensive Applications Using UML 107

However, that selection itself is only a first step on the road for defining a plat-
form-independent language for the area of application assumed. It is necessary to note
the following factors:

• At the origin of the UML when it served rather only as an analysis and design language,
some degree of ambiguity regarding the semantic details could be even considered
desirable, as it leaves more freedom of applying its modelling constructs to varying
technologies. The details of e.g. inheritance mechanism, parameter passing or object
lifecycle could remain irrelevant on the level of abstractionassumed by those models or
could be interpreted locally in terms of the technology of choice. This is not the case for
precise PIM development, hence the efforts to provide UML with precise executable
semantics specification [14].

• Moreover, the multi-purpose nature of UML implies that not all of its elements are
capable of having a precise executable semantics defined. Moreover, from among
the concepts having such capability, a subset should be selected to make the result-
ing language acceptably simple and suitable for its area of application (e.g. taking
into account the needs of target platforms).

While it is impossible to provide a complete specification of the VIDE language here,
in the rest of this section we try to present the most important decisions on selecting
and detailing such a UML subset and describe motivations behind them.

The foundational problem (especially given the purpose of our language) is speci-
fying the data definition language. We start from the complete UML Classes unit and
perform the selection to achieve a data model that is expressive and universal but at
the same time realistic in terms of its implementation and handling by the language
statements. To this end, our motivation is to let the developer get rid of the object-
relational mapping complexity. Hence we assume an object model with classes, static
generalisation/specialisation supporting for substitutability and disallowing inheri-
tance conflicts in terms of the multi-inheritance. Further work on achieving a greater
flexibility of the inheritance hierarchy is aimed at exploiting the notion of dynamic
inheritance in UML which we plan to realize in the form of dynamic object roles [15].
However, since it would require extending the behavioural part of the language either,
we postpone this to the next version of the language.

The role of the UML Classes unit in VIDE can be summarized as follows. The cur-
rent selection of UML notions used by the language seems to be the shortest way for
achieving the expressive power of a programming language. The selection includes
the core notions of UML Classes, Structured Activities and Actions units. Class
model provides the structures that establish a context (in terms of features available to
the behaviour: attributes, links, operations) under which a given behaviour is speci-
fied. It also provides a place for behaviour definition in the form of methods
implementing operations of UML classes. Using VIDE for specifying behaviour in
other contexts than class operations is being considered for the future (it seems to be
feasible to adapt because of the strict UML compliance of VIDE constructs).

A feature that makes the language more distinct from popular OO programming lan-
guages is the realization of the Association notion. Compared to its complete definition a
number of limitations have been introduced. Particularly, we skip the support for non-
binary associations and association-classes. Although useful in conceptual modelling,
they are problematic due to the complexity involved in their implementation. The weak
adoption of CORBA Relationship Service [16] that supported similar notions seems to

www.manaraa.com

108 G. Falda et al.

support this observation. On the other hand, the language will automate the creation and
referential integrity of updates of links that instantiate bi-directional associations. The
current specification of UML provides big number of options for relationships among
objects described by the Property notion: this includes unidirectional and bidirectional
associations, plain attributes (Property not belonging to an Association) and the possibil-
ity to describe each property with the aggregation attribute distinguishing 3 aggregation
kinds1. This may be considered redundant. Moreover, what blurs that distinction is allow-
ing the UML notation to use the attribute and association notation virtually interchangea-
bly. Those issues are considered important since our language demands the possibility of
expressing nested data structures (like e.g. XML documents) – hence we need to distin-
guish several options for connecting two complex objects: plain bidirectional association,
plain unidirectional association, bidirectional composite association, unidirectional com-
posite association (the latter substitutable with non-primitive attribute).

There are also several considerations related to the differences in data modelling and
accessing between programming languages and database environments. In programming
languages the class definition does not usually determine the name of variables that will
store its instances. On the other hand, this is quite natural for database schemas.

The aims and patterns of encapsulation are also rather different in case of database
schema. While the current version supports just the visibility specification for classes’
features, we consider future extending of the encapsulation mechanism using the
notion of updateable views, which may require more precise declarations at the side
of UML [1].

In contrast to programming languages like Java we do not assume the garbage col-
lection of the objects expressed in our language; instead explicit DestroyObjectAction
of UML is supported.

4 Language Development

While “query language” is listed in the standard specification as one of the OCL pos-
sible purposes, the use of the language in VIDE-L is significantly different compared
to the purpose OCL was originally designed for. So far, the expressions of OCL have
been used mainly for constraint specification (where eventually were evaluated into
Boolean values) or e.g. for calculating the initial values of attributes etc. In our case the
area of application is much broader, since anywhere a programming construct needs to be
extracted (e.g. selecting objects to be updated, removed, linked or passed as a parameter
in an operation call), the expressions in OCL are used. This means the result of such
expression does not necessarily need to be just an r-value.

VIDE-L language as a whole makes the similar simplifications in dealing with
complex / primitive data and reference / value distinctions as e.g. Java. However, it
achieves a bit higher expressiveness thanks to introducing dedicated statements for
link updating and by supporting two parameter passing modes from among the ones
assumed by UML: in and inout.

1 Note that the meaning of this attribute (i.e. if the owner of the property plays the “whole” or

the “part” role) is unfortunately dependent on whether the property is a member of associa-
tion or not).

www.manaraa.com

 Platform-Independent Programming of Data-Intensive Applications Using UML 109

The use of queries as described above leads to a seamlessly integrated language,
which is in contrast with embedding queries of a separate language as strings and
dealing with resulting heterogeneity of type systems, syntaxes, binding phases etc.
which is the issue e.g. in the ODMG standard [17] and Java-based specifications that
evolved from it.

Those problems are to a big extent absent in our case, however, to achieve the goal
we needed to deal with some overlap and heterogeneity resulted from this rather novel
use of OCL and from the fact that UML and OCL specifications have been recently
developed separately. Among those it is worth to note:

• Varying style of variable declarations: UML uses multiplicities and the ordering
and uniqueness flags. OCL in turn does not support them and depends on the col-
lection type constructors instead.

• Introducing the seamless support for OCL expressions for UML behaviour makes
the following actions redundant: ReadStructuralFeatureAction, ReadSelfAction,
ReadExtentAction, ReadLinkAction etc.

Apart from the language semantics, also its syntax plays an important role for the
productivity and ease of its adoption. It is necessary to note that the decisions on the
concrete syntax that UML2 specification leaves open for developers is not necessarily
just a plain selection of the list of visual or textual symbols. The elements not having
a concrete syntax specified (which refers roughly to Actions and Structured Activities
units) are fairly universal and fine-grained. This encourages the designers of particu-
lar action languages to consider creation of various higher level language constructs
that are useful for the intended area of application and whose mapping onto UML
element instances is not necessarily “one-to-one”.

Indeed, although we tried to provide the statements that rather directly represent
respective UML Actions and Activities primitives, a number of useful programming
language constructs required a more complex mapping. Those cases include:

• Reusing generic Structured Activities elements to provide useful statements for
loops and conditional instructions. For example, ConditionalNode does not provide
dedicated construct for “else” or “otherwise” clauses. On the other hand, we do not
take advantage of the ConditionalNode’s capability of providing results (i.e. serv-
ing as expressions).

• Providing useful shortcuts like the +=, -=, *= and /= assignments is especially useful
when considering iterative processing of results provided by expressions over data
sources. Those shortcuts also miss dedicated support from UML Actions and while it
is of course easy to construct a metamodel instance of the desired semantics, the re-
verse mapping into a code demands for annotation or stereotype to ease it.

• Macroscopic updates. While (which is also in the spirit of UML behaviour) we
avoid macroscopic updates (e.g. updating many objects with a single statement
without resorting to an iterating instruction), we found the following exceptions
useful. First, we allow collections to be the input of object removal statement. Sec-
ond, we allow to assign a collection to a multi-valued attribute or variable instead
of the need of inserting its elements one by one. Due to the constraints imposed by
UML compliance, this required an implicit use of iterative construct (that is, the
ExpansionRegion).

www.manaraa.com

110 G. Falda et al.

While not providing a formal specification of the language here, we present below
several illustrative code examples referring to the schema defined by the class
diagram in Fig. 1, which is assumed to be defined inside a package named Students.

Fig. 1. Exemplary schema for code samples (the package name is “Students”)

The first example illustrates a simple method of a pure query nature (i.e. having no
side effects). Those kinds of methods could be called inside pure OCL statements.
This distinction is possible to maintain in VIDE-L, as the calls of methods marked as
having side-effects can be delegated to the CallOperationAction rather than handled at
the OCL side. However, we currently do not enforce it in our language. Note also the
OCL-style context declaration which specifies to which operation in the class model
the given method body refers to. In the final version of our prototype the modelling
environment will provide more assistance for this, so this header will not need to be
directly used by the programmer.

context Students::Person.getFullName() : String
body {
 return firstName+’ ‘+lastName;
}

The second example shows a more complex updating method, which uses link navi-
gation and performs iterative updates of the objects selected by an OCL expression.

context Students::Department.assignScholarship(
 in amount : Integer, in noOfStudents : Integer) body {
 students->sortedBy(s |
 -s.calcAvgGrade()).subSequence(1,noOfStudents)
 foreach { s |
 if s.scholarship->size()=0
 then s.scholarship insert amount;

www.manaraa.com

 Platform-Independent Programming of Data-Intensive Applications Using UML 111

 else s.scholarship += amount;
 endif

 }

}

The third example illustrates the link manipulation that moves employees to an-

other department (the reverse links will be maintained automatically).

Department->allInstances()->select(name=’SE’).employs
foreach { f |
 f unlink worksAt;
 f link worksAt
 to Department->allInstances()->select(name =’IS’);
}

The fourth example shows an ad-hoc query which is in this case a pure OCL.

Department->allInstances()->select(name=’IS’)
 ->collect(d |
 employs.title->asSet()->collect(t |
 Tuple{ title = t, avgSal =
 d.employs->select(title=t).salary->avg()}))

Note that two of those examples depend on the class extent retrieval. While this can
be natural for some flavours of object schemas (like e.g. in ODMG), for typical cases
we assume a presence of an object that will be pre-existing with respect to the applica-
tion execution (rather than explicitly instantiated later) to provide an entry point to the
application. For this purpose we have introduced the class stereotype «Module».

As can be seen from the above diagram and code samples, the textual syntax can be
considered a bit eclectic, as it is influenced by three trends: UML type and multiplicity
declarations, OCL with its specific syntax which influenced also the VIDE-L statements
to take a more postfix-style syntactic patterns, plus some solutions coming from Java as
the most popular general-purpose programming language. The positive aspect is that the
syntax seems well suited for extensive contextual support when coding, which is to be
provided by type checking mechanisms. This can be especially visible where query
expressions are involved. Compare the marked steps of the code of example 2:

 /*1*/students /*2*/->sortedBy(s |
 -s.calcAvgGrade()).subSequence(1,noOfStudents)
 foreach { s |
 if s.scholarship /*3*/->size()=0
 then s.scholarship insert amount;
 else s.scholarship += amount;
 endif }

with analogous code expressed with a syntax drawn from ODMG OQL [17] and
popular programming languages:

www.manaraa.com

112 G. Falda et al.

foreach (select s from students s
order by s.calcAvgGrade()
desc)[1..noOfStudents] as std {
 if (not exists(s.scholarship))
 s.scholarship insert amount;
 else s.scholarship += amount;

}

It can be observed that the way the OCL syntax is arranged makes it easier and more
natural to provide hints2 than in case of the select-from-where pattern. At point 1 a list
of names visible in the scope (starting from the most local ones) and statements could
be presented to support that step of code creation. Similarly, at point 2 the list of
available collection information can be presented (since the expression students
returns a collection of objects) as well as the properties of the Student object (because
OCL allows for building path expressions in 1:n direction). A slighter advantage in
terms of the contextual hits can be achieved at point 3, where the selection of proper
operator (OCL operation size()) may be performed from among of few choices deter-
mined by the context of expression s.scholarship.

The visual notation considerations are rather outside the scope of this paper. We just
note the dilemma between choosing the traditional diagrammatic style of syntax (and
aiming at “keyboard-less programming”) or staying closer to textual style of coding
though supporting it with visualization. The textual coding of this level of granularity is
rather predominant. We are aware of only one action language depending on visual
notation – namely Scrall [19] – which deals with a similar problem in terms of combin-
ing the visual and textual notation. The similarities with our language include:

• The idea of controlling the level of detail by collapsing and expanding code ele-
ments and resorting to textual code where it is more suitable.

• Considering data processing as the purpose of the language.

The following differences can be indicated:

• Scrall assumes relational data. It provides some high level operators, but does not
provide a complete query language functionality comparable with OCL.

• Scrall supports the flow-style of behaviour specification which is made possible by the
visual notation. VIDE currently does not directly cover this powerful feature, but the
compliance with UML provides the capability of achieving it in futureextensions by
embedding VIDE-L code inside the diagrams supporting UML Complete Activities.

5 Challenges of the Development Process

Apart from creating a standard-compliant language of adequate expressive power, MDA
solutions need to address the problem of model transformations to automate code crea-
tion. Translating between high-level languages usually involves big complexity. Exam-
ples of the potential problems that need to be faced in that area include:

2 This applies to some extent also to XQuery language [18].

www.manaraa.com

 Platform-Independent Programming of Data-Intensive Applications Using UML 113

• Translating PIM-defined application logic onto the multi-tier solutions of target plat-
forms. The number of possible options in such translations complicates the process
and / or undermines the idea of full platform-independence of the main model.

• Introducing a platform-independent specification of the presentation layer which is
of high importance in various business applications.

• Dealing with data management – including schema definition on the target plat-
form and hiding the “impedance mismatch” between today’s database and pro-
gramming languages behind a uniform platform-independent modelling language.
When dealing with the code to be handled by a DBMS it is not only necessary to
preserve its original semantics, but also to guarantee that the opportunities foroptimi-
zation will not be lost in the course of translation, which is essential for achieving
acceptable performance and resource consumption in data-intensive applications.

In some applications, an alternative to those complex translations could be the idea of
“model driven runtime” [20]. This means that a platform is available that is capable
of directly executing models (e.g. represented in the form of the UML metamodel
instance), so running an application does not require transformation to some other
programming and / or query language. The cited paper arguments that the difference
between having different platform-specific models derived and having many different
model runtimes deployed is less substantial than it may appear. The described solu-
tion deals with simpler scenarios of application development (some Web applications
are given as an example), where no complex application logic occurs and the presen-
tation layer is closely driven by the schema of underlying database. Moreover, the
runtime described in that paper deals with different kind of behavioural models as it
“interprets OCL-annotated class diagrams and state machines”.

Of course this solution is not always acceptable since the use of existing platform
specific tools and environments is required by customers for the applications being
created. That’s why VIDE assumes developing respective model compilers.

However, we have provided a runtime for direct execution of models, as we have
found it important for the following reasons:

• Current standardization efforts of UML should be backed with a reference imple-
mentation to verify the consistency of the language and to disambiguate its
semantics through an operational definition.

• Availability of the engine that would allow direct execution of models seems to be a
feature of primary importance for model-driven development tools, as a mean of
model simulation (also in terms of tracking and debugging particular elements of the
application at the PIM level and in terms of PIM artifacts). Since our current runtime
engine provides rather straightforward implementation for particular model constructs
compared to typical target platforms, it is an interesting option for the future develop-
ment of complete model simulation and debugging environment.

Among other challenges to be faced by VIDE toolset is the integration with business
modelling. This is important to meet the demand for business-process driven software
development approaches and the Service Oriented Architecture viewpoint on the
applications. A similar, but separate problem is an attempt to improve the business
stakeholders’ involvement into modelling and application prototyping.

www.manaraa.com

114 G. Falda et al.

The above considerations set the following assumptions for the current work on the
VIDE project:

• UML compliant PIM, provided with the means and level of precision of a pro-
gramming language becomes the central artefact of the software construction.

• Model execution capability allows to validate the system functionality directly
from the tool (i.e. without the steps of explicit code generation and its deployment).

• Appropriate elements of model behaviour may be distinguished as externally avail-
able service interfaces and equipped with a complete Web service descriptions for
the purpose of model’s direct execution.

• For the scenarios that allow it, the model may be rather directly deployed in the
flavour of a MDR using its execution engine (purely object-oriented database sys-
tem prototype).

• If creating application functionality on the Java platform is the aim, a model
compiler (currently under design) will be used to generate Java code defining the
application logic and using data persistency through the JDO interface [21].

• At the side of initial phases of a software development process, a significant amount
of work has been allocated to describe gradual, incremental transition from informal
requirements set and computation independent model towards precise PIM.

6 Conclusions and Future Work

The aim of the research outlined in the paper can be considered challenging for several
reasons. The first challenge is to provide adequate and advantageous means of software
specification, taking into account new kinds of user profiles assumed by the MDA devel-
opment process. It has to recognize and properly balance the needs of such user groups as
modellers familiar with CASE tools, programmers familiar with traditional programming
and query languages, and non-IT stakeholders seeking for model accessibility. Another
challenge is the need of alignment with modelling standards on one side and target plat-
form technologies at the other side. Those considerations draw two important goals for
the next step of our research:

1. Completing the existing textual prototype with the implementation of selected
concepts of visual notation and gaining feedback from users.

2. Investigating the possibilities of developing model compilers from the kind of
modelling constructs VIDE employs, onto the implementation technologies used in
the industry.

References

1. Object Management Group: Unified Modeling Language: Superstructure version 2.1.1, for-
mal/2007-02-05 (February 2007)

2. Mellor, S.J., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principles of Model-Driven Ar-
chitecture. Addison-Wesley, Reading (2004)

3. McNeile, A.: MDA: The Vision with the Hole (2003),
http://www.metamaxim.com

www.manaraa.com

 Platform-Independent Programming of Data-Intensive Applications Using UML 115

4. Warmer, J., Kleppe, A.: Object Constraint Language, The: Getting Your Models Ready for
MDA. Addison-Wesley, Reading (2003)

5. Object Management Group: Meta Object Facility (MOF) Core Specification version 2.0,
formal/06-01-01 (January 2006)

6. Object Management Group: Object Constraint Language version 2.0, formal/06-05-01 (May
2006)

7. Hailpern, B., Tarr, P.: Model-driven development: The good, the bad, and the ugly. IBM Sys-
tems Journal: Model-Driven Software Development 45(3) (2006)

8. Ambler, S.W.: A Roadmap for Agile MDA. Ambysoft, upd (2007),
http://www.agilemodeling.com/essays/agileMDA.htm

9. Thomas, D.A.: MDA: Revenge of the Modelers or UML Utopia? IEEE Software 21(3), 15–
17 (2004)

10. Fowler, M.: UML as Programming Language (2003), http://www.martinfowler.
com/bliki/UmlAsProgrammingLanguage.html

11. Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for Model-Driven Architecture
Addison Wesley. Addison Wesley, Reading (2002)

12. Wilkie, I., King, A., Clarke, M., Weaver, C., Rastrick, C., Francis, P.: UML ASL Reference
Guide ASL Language Level 2.5 Manual Revision D, Kennedy Carter Limited (2003),
http://www.omg.org/docs/ad/03-03-12.pdf

13. Eclipse Modeling Project, Model Development Tools. Eclipse Foundation, http://www.
eclipse.org/modeling/mdt/

14. Object Management Group: Semantics of a Foundational Subset for Executable UML Mod-
els. Request For Proposal. ad/2005-04-02

15. Jodłowski, A., Habela, P., Płodzień, J., Subieta, K.: Dynamic Object Roles - Adjusting the
Notion for Flexible Modeling. In: Proc. of the International Database Engineering and Appli-
cation Symposium (IDEAS), pp. 449–456. IEEE Computer Society, Coimbra (2004)

16. Object Management Group: Relationship Service Specification version 1.0. formal/00-06-24
(April 2000)

17. Cattel, R.G.G., Barry, D.K. (eds.): Object Data Management Group, The Object Database
Standard ODMG, Release 3.0. Morgan Kaufmann, San Francisco (2000)

18. World Wide Web Consortium: XQuery 1.0: An XML Query Language. W3C Recommenda-
tion 23 (January 2007), http://www.w3.org/TR/xquery/

19. Starr, L.: Starr’s Concise Relational Action Language version 1.0 (August 2003), http://
www.modelint.com/downloads/mint.scrall.tn.1.pdf

20. Pleumann, J., Haustein, S.: A Model-Driven Runtime Environment for Web Applications. In:
Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 190–204.
Springer, Heidelberg (2003)

21. Java Data Objects Expert Group: JavaTM Data Objects 2.0. JSR 243 Final 23 (February
2006), http://java.sun.com/javaee/technologies/jdo/

www.manaraa.com

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 116–128, 2008.
© IFIP International Federation for Information Processing 2008

Towards UML-Intensive Framework for Model-Driven
Development

Darius Silingas1,2 and Ruslanas Vitiutinas1,3

1 No Magic, Inc., Lithuanian Development Center
Savanoriu av. 363-IV, LT-44242 Kaunas, Lithuania

2 Kaunas University of Technology,
Information Systems Chair

Studentu 50-313a, LT-51368 Kaunas, Lithuania
3 Vytautas Magnus University,

Faculty of Informatics,
Vileikos 8-409, LT-44404 Kaunas, Lithuania

{Darius.Silingas,Ruslanas.Vitiutinas}@nomagic.com

Abstract. The paper describes a conceptual framework for model-driven devel-
opment based on a concise application of UML and modeling tool functionality.
A case study of modeling software for library management is presented as an il-
lustration of how to apply the proposed framework. Modeling tool features such
as model transformations, code generation cartridges, model validation, de-
pendency matrix, model metrics, model comparison, and model refactoring are
presented as enablers for efficient model-driven development. The presented
ideas and samples are based on industrial experience of authors who work as
trainers and consultants for the modeling tool MagicDraw UML.

Keywords: UML, MDA, Model-Driven Development, MagicDraw.

1 Introduction

Model-Driven Architecture (MDA) is a new software development trend, which gains
popularity in industry. Unified Modeling Language (UML) is considered a key tool
for preparing source models for code generation in MDA environments. Recently, the
language has undergone major changes moving from UML 1.4 version to UML 2.
The rational behind most of these changes was to provide a better infrastructure for
MDA [1], [4]. However, recent MDA tools make rather limited use of UML 2
elements focusing mostly on class diagrams and activity or state diagrams. In the
paper we present the framework for concisely developing UML 2 models for domain
analysis, requirements specification, architectural decomposition, detailed design,
implementation, and testing. We also indicate what UML tool functionality is useful,
and which UML elements should be used for modeling implementation. Most of the
presented ideas come from industrial experience of the authors, who work as trainers
and consultants for the MagicDraw UML modeling tool.

www.manaraa.com

 Towards UML-Intensive Framework for Model-Driven Development 117

2 Conceptual Framework for Model-Driven Development

MDA defines three abstraction levels of modeling: Computation-Independent Model-
ing (CIM), Platform-Independent Modeling (PIM), and Platform-Specific Modeling
(PSM). We define the following major modeling tasks that should be completed while
developing software system:

Define Architecture

Perform Detailed Design

Tasks

Analyze Business
Domain

Define System
Requirements

Implement Code

Implement Tests

Artifacts

Business
Processes

Domain Entities
and Relationships

Entity Lifecycles

Actors

Use Cases

Use Case
Scenarios

Components

Package
Dependencies

Deployments

Test Data
Samples

Test Scenarios

Platform-Specific
Components

Platform-Specific
Classes

Platform-Specific
Interactions

Use Case
Interactions

Data Structure

Service API

GUI Navigability
Map

Fig. 1. Conceptual framework for model-driven development

www.manaraa.com

118 D. Silingas and R. Vitiutinas

1. Analysis of business domain (purely focusing on CIM);
2. Definition of system requirements (mostly focusing on CIM);
3. Definition of high-level system architecture (mostly focusing on PIM);
4. Detailed design (mostly focusing on PIM);
5. Implementing code (mostly focusing on PSM);
6. Implementing tests (mostly focusing on PSM).

Each of these tasks should create of set of UML-based modeling artifacts. We present
these tasks and artifacts in a conceptual framework, which is defined by UML activity
diagram presented in Fig. 1. Although the framework defines the sequential logical
flow of tasks, we want to emphasize that the nature of modern modeling is iterative –
you need to repeat the tasks in iterations and come back for model updates.

3 MagicLibrary: A Case Study

In this chapter we will present more detailed description of modeling tasks and pre-
sent major modeling artifacts for a case study system that will serve as illustrations
for applying the conceptual modeling framework introduced in the previous chapter.

3.1 A Case Study Problem Statement

A large organization maintains a library, which contains books, audio and video
records. The organization made a decision to implement software system MagicLi-
brary dedicated for facilitating library usage and management.

MagicLibrary should support three types of users – librarian, reader, and adminis-
trator. Both reader and librarian are able to search for library items. Each library item
is assigned to one or more categories and contains a list of keywords (optional). Item
may be found either by browsing the category tree or searching for items by their
property values. If reader finds a desirable item, he makes a reservation for it. If the
item is immediately available then the reader is informed that he may contact librarian
for loaning it according to the made reservation.

If the item is currently loaned out or assigned to another reservation then the reser-
vation is put to the ordered waiting list. When the waiting reservation becomes avail-
able the system notifies the user. Notifications are sent either by e-mail or SMS
according to the user preferences. Available reservations are automatically cancelled
if reader doesn’t come to take the item on loan for a period of time defined in system
settings. Librarian registers the loan of the item and sets the due return date.

Librarian also registers the return of the loaned item. If a reader has kept the loaned
item after the due date, he is given a penalty.

Reader may review his profile, which contains his reservations, loans, requests,
and his personal data. Librarian is responsible for managing inventory data: titles,
items and categories. Librarian is also responsible for managing MagicLibrary users
and configuring system settings like default loan period, available reservation time-
out, max reservations per reader, etc.

www.manaraa.com

 Towards UML-Intensive Framework for Model-Driven Development 119

3.2 Analyze Business Domain

The purpose of business domain analysis is to understand how the business system
works before going into development of software systems that automate some of
business-defined procedures. We think that the basic views of business domain are
identification of business entities and their structural relationships, business processes,
and the lifecycles of business entities that have important states that allow different
business actions.

We recommend starting with definition of business entities and their relationships
using simple class diagram using classes displaying only name compartment and
named associations, see Fig. 2. Additionally, you may define association role cardi-
nalities for better understanding of relationship nature. Such diagram serves as visual
dictionary of business terminology. The terms defined in it should be used consis-
tently in all other diagrams and model elements. Of course, while modeling, you will
need to come back and update this diagram to reflect the discovered changes.

Reader

Title

Category Item

Notification

Reservation Loan

Request

gives out

1

0..1

copy of

1

0..*

informs about

0..1

0..1

has parent

0..1

0..*

informs about

0..1

0..1

asks for
10..*

requests

1

0..*
given by

1 0..1

associated to

1..*

0..*

makes

0..*

1
makes

0..*1

Fig. 2. Library business domain entities and relationships class diagram

A business entity lifecycle can be presented by an analysis-level state diagram
indicating what behaviors are possible on which entity state, what actions trigger
transitions between states, and what activities should be executed as side effect of
transition, entering a state or exiting from it. In concise modeling, states machine
model should be assigned to entity class using classifier’s behavior property that is
available since UML 2 [1]. A sample state machine, defined in Fig. 3, should be cre-
ated inside class Item, and assigned as a behavior for that class.

Very important modeling artifacts are business processes that can be defined using ei-
ther pure UML activity diagrams or Business Process Modeling Notation (BPMN) [3]. In
such diagrams, the focus is on the sequence of tasks, separation of responsibilities, deci-
sion points, triggering business events, communications between processes in different
organizations, and exchanged data, mostly documents.

www.manaraa.com

120 D. Silingas and R. Vitiutinas

In Use

Loaned

at (due to return) / notify about overdue

Assigned

notify about availabilityentry /

Available

check for waiting reservationsentry /

Lost

Return

Lost

after (max pending time)

Loan

Cancel / notify reader
WaitingReservation

Return

after (1 year)

Register

Damaged

Fig. 3. Analysis-level state diagram presenting lifecycle of Item entity

3.3 Define System Requirements

Software development is driven by the expressed requirements. Most of the major
approaches to requirements analysis are based on use case method. In the famous 4+1
architectural views model, use cases are defined as a central modeling artifact [5]. We
suggest the following use case modeling workflow:

1. Define actors (in a separate diagram) grouping them into primary (main users),
secondary (administration, maintenance, support), and system actors.

2. Define main system use cases in a sketch use case diagram.
3. Group the created use cases into packages according to their coherence.
4. Prepare use case package overview diagram, showing which actors uses which

use case package. Alternatively, use case model overview can be done using so
called dependency matrix, which in tabular form shows the relationships be-
tween actors and use cases grouped by packages.

5. Prepare use case package details diagram, showing package use cases, their as-
sociations with actors, relationships between use cases including uses cases
from different packages (shown outside the package symbol), Fig. 4.

6. Prepare activity diagrams visualizing scenarios of complex use cases, Fig. 5. In
the model, the activities should be nested within appropriate use cases and as-
signed as their behaviors. Some actions may call reusable activities.

7. Document use cases according to pre-defined templates, e.g. Rational Unified
Process or Process Impact defined use case templates.

www.manaraa.com

 Towards UML-Intensive Framework for Model-Driven Development 121

Loaning

Make Title Reservation

Cancel Title Reservation

Register Item Loan

Review Reader Profile

Register Items Return

Notify about Availability
Librarian

Reader Time

<<extend>>
(waiting reservations)

<<extend>>
(waiting reservations)

Fig. 4. Use case diagram showing details of use case package Loaning

Fig. 5. Activity diagram showing scenarios for use case Register Items Return

However, use cases define just the user-level functional requirements. In practice,
functional requirements are usually decomposed into smaller-grained functional re-
quirements; also many types of non-functional requirements are specified [6]. For

www.manaraa.com

122 D. Silingas and R. Vitiutinas

enabling structural modeling of requirements and their relationships, we suggest to
prepare a custom class diagram enhancement for requirements modeling. A similar
approach is taken in SysML [2]. This approach also enables requirements traceability
using tool-generated dependency matrices.

com.nomagic.magiclibrary

service

entity

ui

util

Fig. 6. Package diagram showing dependencies between top-level packages

AuthorizationService

ReaderProfileDialog

RequestService

TitleRequestDialog

NotificationService

InventoryManager

TimedOperations

UserManager

TitleBrowser

LoanService

RequestList

Reservation

LoginDialog UserProfile

TitleDetails

Category

Librarian

UserList

Request

Penalty

Item

Title

Time

Loan

User

Reader Reader

Fig. 7. Robustness analysis of relationships between components in layers

www.manaraa.com

 Towards UML-Intensive Framework for Model-Driven Development 123

3.4 Define Architecture

Design of the software system starts by specifying its high-level architecture, which is
usually modeled in structural component, package dependency, and deployment dia-
grams. Most of the modern business-oriented software systems are built on the layered
architecture pattern. For such systems, we recommend to start architectural design with
package dependency and robustness analysis diagrams [7]. Package dependency
diagram shows how the system is organized into layers, Fig. 6.

Robustness analysis diagram defines the major components in different layers –
interface boundaries, controll services, data entities, – and their relationships crossing
layer boundaries, Fig. 7. It is important to show which actor uses which interface
boundaries. The inspiration for the data entities are the conceptual entities, for the
controll services – use case packages, and the interface boundaries need to be invented

<<device>>

Server

magiclibrary/stylesheets

administration.ear

magiclibrary/jsp

services.ear

common.jar

security.ear

<<execution environment>>

App Server
<<execution environment>>

DB Server

<<artifact>>

jdbc:odbc:library

Web Client

Internet Explorer

Local Client

MagicLibrarian.jar
common.jar

JDBC

**

OOIP/RMI

1*

HTTP
1*

Fig. 8. Deployment architecture

 a
dm

in
is

tr
at

io
n.

ea
r

 c
om

m
on

.ja
r

 I
nt

er
ne

t E
xp

lo
re

r

 jd
bc

:o
db

c:
lib

ra
ry

 M
ag

ic
Li

br
ar

ia
n.

ja
r

 m
ag

ic
lib

ra
ry

/j
sp

 m
ag

ic
lib

ra
ry

/s
ty

le
...

 s
ec

ur
ity

.e
ar

 s
er

vi
ce

s.
ea

r

Components

InventoryManagement

LibrarianClient

LoanService

MagicLibraryDB

NotificationService

ReaderWebClient

RequestService

SecurityManagement

UserManagement

2 5 1 1 1 1 1 1 3

Fig. 9. Component-artifact manifestation

www.manaraa.com

124 D. Silingas and R. Vitiutinas

at this point and may be refined later. Each of the defined components should be placed
into appropriate packages. In the subsequent detailed design task, it is necessary to
refine each component by modeling its details.

It is common at architectural design level to define at least the major ideas about
the system deployment. This usually includes platform-specific information. At this
point, it is important to define only the major deployment artifacts, topology of
network, and communication protocols, Fig. 8.

While UML 2.0 districts the deployment of components, and insists of deploying
artifacts, it is necessary to separate logical components and physical artifacts. The
relationships between those two sets are modeled by manifestation relationships. We
recommend dependency matrices for representing and editing manifestations, Fig. 9.

3.5 Perform Detailed Design

After the structural components are identified, it is time to provide more details for
each of them. Different aspects are important for different layers:

• Data entity layer should focus on specification of data class attributes and de-
tails of associations, such as navigability and role names, Fig. 10.

• Service layer should focus on specification of API, which is defined in public op-
erations of services. We recommend specifying service operations while design-
ing interactions for use case scenarios. With this approach, it is easier to see the
context in which operations are used, which allows define appropriate responsi-
bilities and their contracts (operation parameters, returns, visibility and other
properties). We consider it as a modeling substitute for the test-driven program-
ming approach since we define the structural class features – operations, while
designing behavioral scenarios, Fig. 11. Later service API can be visualized using
class diagrams showing only operations and dependencies between services.

Reader

-readerId : int
-registerAt : date
-active : boolean

Penalty

-suspendedPeriod : Period

MediaRecord

-label : String
-duration : int
-tracks : String

Loan

-madeAt : date
-returnedAt : date

Item

-inventoryNr : int

Reservation

-madeAt : date
-pendingFrom : date

Book

-ISBN : String
-pages : int

Title

-name : String
-publishedAt : date
-author : String

<<enumeration>>
ReservationState

WAITING
PENDING
LOANED

-itemInfo

1

0..*
-assignedItem

0..1

-origin1

0..1

-suspendedReader1

0..*

-/loanedItem
1

0..*

-reservedTitle

10..*0..*

-reader

1

-overdueLoan
10..1

-/status

Fig. 10. Class diagram emphasizing data entity attributes and relathioships

www.manaraa.com

 Towards UML-Intensive Framework for Model-Driven Development 125

 : ReaderProfileDialog

 : UserManager : LoanService : Librarian : UserList : Loan

AssignItemToWaitingReader

ref

registerReturns()8:

checkOverdue(-)9:

penalizeReader(-)10:

inactivate()11:

enter reader's full name1:

submitUserSearch()2:

submitReturns(-)7:

select returned loans6:

getReader(-)3:

getLoans(-)4:

open5:

AssignItemToWaitingReader

ref

Fig. 11. Sequence diagram showing interaction of identified components for implementing
Register Item Return “happy day” scenario

TitleBrowser

ReaderProfileDialog

loadReaderInfoentry /

LoanDetails

ReservationDetails

TitleDetails MakeReservation

Home

ReservationDetails

Browse

CancelReservation

Home

LoanDetails

Browse

SelectCategory / refreshTitles

GetDetails Browse

 [multiple matches]

 [one match]

Search

Login

Fig. 12. User interface navigation schema for actor Reader

• User interfaces should focus on GUI navigability maps and definition of inner
structure of GUI elements. The former is best modeled with state diagram,
where each state defines separate GUI component and the transition triggers de-
fine GUI events, Fig. 12. The later is usually done using graphical prototypes
that are not based on UML. The composite structure diagram introduced in
UML 2 is a potential candidate for this task but the tool support for modeling
this in user-friendly way is still not available.

www.manaraa.com

126 D. Silingas and R. Vitiutinas

3.6 Implement Code

In model-driven approach, we use the created model artifacts for generating code. For
enabling code generation, we need to enrich PIM level models with platform-specific

<<table>>
Loan

<<PK>>-id : integer
-madeAt : date
-returnedAt : date
<<not null>> <<unique>>-fk_Reservation : i...
<<not null>>-fk_Item : integer [1]

<<table>>
Reservation

<<PK>>-id : integer
-madeAt : date
-pendingFrom : date
<<not null>>-fk_Reader : integer [1]
<<not null>>-fk_Title : integer [1]

<<table>>
Item

<<PK>>-id : integer
-inventoryNr : int
<<not null>> <<unique>>-fk_Reservation : i...
<<not null>>-fk_Title : integer [1]

<<FK>>
{FK columns = fk_Reservation ,
PK columns = id }

<<FK>>
{FK columns = fk_Reservation ,
PK columns = id }

<<FK>>

{FK columns = fk_Item ,
PK columns = id }

Fig. 13. A fragment of PSM for relational database structure

Table 1. A fragment of DDL script generated from PSM for database design

CREATE SCHEMA MagicLibrary;
...
CREATE TABLE Reservation (

id integer PRIMARY KEY,
madeAt date,
pendingFrom date,
fk_Reader integer NOT NULL,
fk_Title integer NOT NULL,
FOREIGN KEY(fk_Reader) REFERENCES Reader (id),
FOREIGN KEY(fk_Title) REFERENCES Title (id)

);
CREATE TABLE Item (

id integer PRIMARY KEY,
inventoryNr int,
fk_Reservation integer NOT NULL UNIQUE,
fk_Title integer NOT NULL,
FOREIGN KEY(fk_Reservation) REFERENCES Reservation (id),
FOREIGN KEY(fk_Title) REFERENCES Title (id)

);
CREATE TABLE Loan (

id integer PRIMARY KEY,
madeAt date,
returnedAt date,
fk_Reservation integer NOT NULL UNIQUE,
fk_Item integer NOT NULL,
FOREIGN KEY(fk_Reservation) REFERENCES Reservation (id),
FOREIGN KEY(fk_Item) REFERENCES Item (id)

);
...

www.manaraa.com

 Towards UML-Intensive Framework for Model-Driven Development 127

information. It is recommended to do it via semi or fully automated model-to-model
transformations. Code generation from PSM models is implemented either by plug-
able code generation cartridges or model-to-code transformations. As a sample, we
present a fragment for PSM model for relational database design, Fig. 13 and DDL
script generated from this PSM model, Table 1.

3.7 Implement Tests

For implementation of tests, a modeler may use object diagrams for visualizing data
structures that should be used in testing. The sequence diagram, which is not a very
good tool for modeling algorithms, is perfectly suitable for defining test scenarios.
The assertion fragment introduced in UML 2 is also a very useful construct for that
purpose. Both these diagrams are suitable artifacts for code generation, [8].

4 Enabling Toolkit for Model-Driven Development

For enabling efficient model-driven development, the UML modeling environment
should provide multiple features. Below we list features that are already supported in
industrial modeling tools like MagicDraw UML:

• Concise integration of model elements through UML-define properties;
• Model validation;
• Plug-able patterns;
• Plug-able model transformations;
• Plug-able code generation cartridges;
• Project decomposition to several modules;
• Interactive modeling teamwork;
• Tracking and analysis of model element relationships;
• Automated relationship matrices representing model element relationships;
• Model metrics, calculated according to the model content;
• Customizable model documentation reports.

The following features are also highly demanded, but are not yet implemented (or
implemented very poorly) in the state-of-the-art modeling tools:

• Model refactoring;
• Merging changes between different model versions;
• Modeling unit tests for supporting test-driven modeling approach.

With the mentioned tools at their hands, the modelers can apply a model-driven de-
velopment in efficient ways allowing increase of development speed and quality.

5 Summary

We have introduced the conceptual UML-intensive framework for model-driven de-
velopment and provided a case study based model examples illustrating essential

www.manaraa.com

128 D. Silingas and R. Vitiutinas

work products resulting from the tasks presented in the framework. In the context of
these artifacts we discussed the ideas of how to increase modeling efficiency with
desirable automation features. Finally, we have briefly introduced the modeling envi-
ronment features that need to be supported for enabling efficient and agile software
development while applying the proposed framework. We hope that the presented
information is a valuable starting point for more detailed industrial and academic
research on the topic of UML-intensive model-driven development.

References

1. Object Management Group. UML 2.1.1 Unified Modeling Language: Superstructure, Specifi-
cation (2007)

2. Object Management Group. Systems Modeling Language (SysML), Specification (2006)
3. Object Management Group. Business Process Modeling Notation (BPMN), Specification

(2006)
4. Meservy, T.O., Fenstermacher, K.D.: Transforming Software Development: An MDA Road

Map. Computer 38(9), 52–58 (2005)
5. Kruchten, P.B.: The 4+1 View Model of architecture. Software, IEEE 12(6), 42–50 (1995)
6. Wiegers, K.E.: Software Requirements, 2nd edn. Microsoft Press, Redmond (2003)
7. Lange, C.F.J., Chaudron, M.R.V.: UML Software Architecture and Design Description. In:

van Leeuwen, J. (ed.) Software, March-April 2006, vol. 23(2), pp. 40–46. IEEE, Los Alamitos
(2006)

8. Nebut, C., Fleurey, F., Le Traon, Y., Jezequel, J.-M.: Automatic Test Generation: A Use Case
Driven Approach. IEEE Transactions on Software Engineering 32(3), 140–155 (2006)

www.manaraa.com

UML Static Models in Formal Approach

Marcin Szlenk

Warsaw University of Technology,
Institute of Control & Computation Engineering,

Nowowiejska 15/19, 00-665 Warsaw, Poland
M.Szlenk@ia.pw.edu.pl

Abstract. The semantics of models written in UML is not precisely
defined. Thus, it is hard to determine, how a given change in a model
influences its meaning and, for example, to verify whether a given model
transformation preserves the semantics of the model or not. In the paper
a formal (mathematical) semantics of key elements of the UML static
models is presented. The aim is to define the basic semantic relations
between models: a consequence (implication) and equivalence. The goal
of the definitions and examples presented in the article is to form a very
basic, concise, theoretical foundation for the formal comparison of the
UML static models, based on their meanings.

Keywords: Software modeling, UML, Formal reasoning.

1 Introduction

Unified Modeling Language (UML) [9,12] is a visual modeling language that is
used to specify, construct and document software systems. The UML has been
adopted and standardized by the Object Management Group (OMG). The UML
specification [12], published by OMG, is based on a metamodeling approach. The
metamodel (a model of UML) gives information about the abstract syntax of
UML, but does not deal with semantics, which is expressed in a natural language.
Furthermore, because UML is method-independent, its specification tends to set
a range of potential interpretations rather than providing an exact meaning.

As far as software modeling is concerned, we can distinguish two types of
models: dynamic and static. The dynamic model is used to express and model
the behaviour of a problem domain or system over time, whereas the static
model shows those aspects that do not change over time. UML static models are
mainly expressed using a class diagram that shows a collection of classes and their
interrelationships, for example generalization/specialization and association.

After the first UML specification was published, various propositions of UML
formalization have appeared. The semantics of class diagrams was expressed
using such formal languages as Z [4,5], PVS-SL [1], description logic [2] and
RAISE-SL [6]. Some of the works were restricted to the semantics of models,
while the others were concerned with the issues of reasoning about models and
model transformation. It seems that the subject of reasoning about UML static
models still lacks a formal approach to the problem of the semantic equivalence of

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 129–142, 2008.
c© IFIP International Federation for Information Processing 2008

www.manaraa.com

130 M. Szlenk

two models. There are some informal approaches but they result in unverifiable
model transformation rules (see e.g. [3,8]).

In the paper the syntax and semantics of a UML static model restricted to
key elements of a class diagram are formally defined. The definitions which are
presented here adhere to the UML 2. Using the proposed formalization, we show
how one can reason about UML static models in a fully formal way, especially
about their equivalence.

2 Metalanguage

As a language for defining the semantics of UML static models, we use basic
mathematical notation. In this section we briefly outline only the list and func-
tion notation, as they may vary in different publications.

For a set A, P(A) denotes the set of all the subsets of A, and A∗ denotes the
set of all the finite lists of elements of A. The function len(l) returns the length
of a list l. For simplicity, we add the expression A∗(2), which denotes the set of
all finite lists with a length of at least 2. The function πi(l) projects the i-th
element of a list l, whereas the function πi(l) projects all but the i-th element.
The list [a1, . . . , an] is formally equal to the tuple (a1, . . . , an). For a finite set
A, |A| denotes the number of elements of A.

The partial function from A to B is denoted by f : A ⇀ B, where the function
dom(f) returns the domain of f . The expression f : A → B denotes the total
function from A to B (in this case it holds dom(f) = A).

3 Syntax

The key concepts used in UML static models: class, association and association
class are considered here. All of them are types of classifier.1 Taxonomical rela-
tionships among them, which are defined in the UML metamodel, are shown in
Fig. 1. It is worth emphasizing that an association class is a single model element
which is both an association and a class.

Definition 1 (Classifiers). With Classifiers we denote a set of all the clas-
sifiers (the names of classes, associations and association classes) which may
appear in a static model.

Below we formally define abstract syntax of simple UML static models. The syn-
tax is defined in a way which reflects the relationships from Fig. 1. It makes both
the definition of the syntax and the semantics (discussed later) more concise.

Definition 2 (Model). By a (static) model we understand a tuple

M = (classes, assocs, ends, mults, specs), where: (1)

1. M.classes is a set of classes:

M.classes ⊆ Classifiers. (2)

1 Association is included as a type of classifier since the introduction of UML 2.0.

www.manaraa.com

UML Static Models in Formal Approach 131

Classifier

Class Association

AssociationClass

Fig. 1. The part of the hierarchy of classifiers in the UML metamodel [12]

2. M.assocs is a set of associations:

M.assocs ⊆ Classifiers. (3)

For the model M, a set of association classes and a set of all classifiers are
thus respectively defined as:

M.asclasses =def M.classes ∩ M.assocs, (4)
M.classifiers =def M.classes ∪ M.assocs. (5)

3. M.ends is a function of association ends. The function maps each association
to a finite list of at least two, not necessarily different, classes participating
in the association:

M.ends : M.assocs → M.classes∗(2). (6)

The position on the list M.ends(as) uniquely identifies the association end.
An association class cannot be defined between itself and something else
[12, p. 47]:

∀ac ∈ M.asclasses · ∀i ∈ {1, . . . , len(M.ends(ac))}· (7)
πi(M.ends(ac))
= ac.

4. M.mults is a function of multiplicity of association ends. Multiplicity is a
non-empty set of non-negative integers with at least one value greater than
zero. The default multiplicity is the set of all non-negative integers (N). The
function assigns to each association a list of multiplicity on its ends:

M.mults : M.assocs → (P(N) \ {∅, {0}})∗(2). (8)

As before, the position on the list M.mults(as) identifies the association end.
The multiplicity must be defined for each association end:

∀as ∈ M.assocs · len(M.mults(as)) = len(M.ends(as)). (9)

5. M.specs is a function of specializations. The function assigns to each classi-
fier a set of all (direct or indirect) its specializations:

M.specs : M.classifiers → P(M.classifiers). (10)

www.manaraa.com

132 M. Szlenk

The specialization hierarchy must be acyclical [12, p. 53], what means that a
classifier cannot be its own specialization:

∀cf ∈ M.classifiers · cf /∈ M.specs(cf). (11)

By default a classifier may specialize classifiers of the same or a more general
type [12, p. 54], i.e. class may be a specialization of class; association may
be a specialization of association; association class may be a specialization
of association class, class or association. Formally:

∀cl ∈ M.classes · M.specs(cl) ⊆ M.classes, (12)
∀as ∈ M.assocs · M.specs(as) ⊆ M.assocs, (13)
∀cf ∈ M.classifiers · M.specs(cf) � M.asclasses ⇒ (14)

cf /∈ M.asclasses.

An association specializing another association has the same number of ends:

∀as1, as2 ∈ M.assocs · as2 ∈ M.specs(as1) ⇒ (15)
len(M.ends(as1)) = len(M.ends(as2)),

which are connected to the same classifiers as in a specialized association or
to their specializations [12, p. 39]:

∀as1, as2 ∈ M.assocs · as2 ∈ M.specs(as1) ⇒ (16)
∀i ∈ {1, . . . , len(M.ends(as1))} · πi(M.ends(as2)) ∈

{πi(M.ends(as1))} ∪ M.specs(πi(M.ends(as1))).

The above definition does not include directly attributes of classes. However, an
attribute has the same semantics as an association. An example of attributes
and corresponding associations are shown in Fig. 2.2

 b : B
 c : C [m..n]

A

B

C

A

m..n

0..*

1
b

c
0..*

Fig. 2. Attributes and associations

Definition 3 (Models). Models denotes a set of all the models, as in
definition 2.

4 Semantics

A classifier describes a set of instances that have something in common [9]. An
instance of a class is called an object, whereas an instance of an association is
2 This unification of attributes and associations is new to UML 2.0.

www.manaraa.com

UML Static Models in Formal Approach 133

called a link. A link is a connection between two or more objects of the classes at
corresponding positions in the association. An instance of a class association is
both an object and a link, so it can both be connected by links and can connect
objects.

Definition 4 (Instances). Instances denotes a set of all the potential instances
of the classifiers from the set Classifiers.

The existing instances of a classifier are called its extent. If two classifiers are
linked by a specialization relationship, then each instance of a specializing (spe-
cific) classifier is also an instance of a specialized (general) classifier [12]. In
other words, the extent of the specific classifier is a subset of the extent of the
general one.

The classifier extent usually varies over time as objects and links may be
created and destroyed. Thus, the classifiers’ extents form a snapshot of the state
of a modelled problem domain or system at a particular point in time.

Definition 5 (State). State is a pair

S = (instances, ends), where: (17)

1. S.instances is a partial function of extents. The function maps each classifier
to a set of its instances (extent):

S.instances : Classifiers ⇀ P(Instances). (18)

2. S.ends is a partial function of link ends. The function assigns to each instance
of an association, i.e. link, a list of instances of classes (objects) which are
connected by the link:

S.ends : Instances ⇀ Instances∗(2). (19)

The position on the list uniquely identifies the link end, which on the other
hand, corresponds to an appropriate association end.

Definition 6 (States). With States we denote a set of all the states as in the
definition 5.

The static model shows the structure of states (of a given domain or system)
or, from a different point of view, defines some constraints on states. Thus, the
model can be interpreted as the set of all such states in which the mentioned
constraints are satisfied. Below we define the relationship between models and
states as a relation of satisfaction: Sat ⊆ Models × States. If Sat(M, S) holds
then the constraints expressed as model M are satisfied in the state S. Next,
we formally define the meaning of a model as the set of all states in which the
model is satisfied.

Definition 7 (Satisfaction). Let S ∈ States and M ∈ Models. The model M
is satisfied in the state S and we write

Sat(M, S), if and only if: (20)

www.manaraa.com

134 M. Szlenk

1. S specifies the extents of all classifiers in M (and maybe others, not depicted
in the model M)3:

M.classifiers ⊆ dom(S.instances). (21)

2. An instance of a given association only connects instances of classes partic-
ipating in this association (on the appropriate ends):

∀as ∈ M.assocs · ∀ln ∈ S.instances(as)· (22)
len(M.ends(as)) = len(S.ends(ln)) ∧
∀i ∈ {1, . . . , len(M.ends(as))}·

πi(S.ends(ln)) ∈ S.instances(πi(M.ends(as))).

3. Instances of an association satisfy the specification of multiplicity on all as-
sociation ends.4 For any n − 1 ends of n-ary association (n ≥ 2) and n − 1
instances of classes on those ends, the number of links they form with in-
stances of the class on the remaining end belong to the multiplicity of this
end [12, p. 40]:

∀as ∈ M.assocs· (23)
∀i ∈ {1, . . . , len(M.ends(as))} · ∀p ∈ product(as , i)·

|{ ln ∈ S.instances(as) : πi(S.ends(ln)) = p }| ∈
πi(M.mults(as)),

where:

product(as , i) =def

len(M.ends(as))

×
j=1, j �=i

S.instances(πj(M.ends(as))). (24)

4. An extent of an association includes, at most, one link connecting a given
set of class instances (on given link ends):5

∀as ∈ M.assocs · ∀ln1, ln2 ∈ S.instances(as)· (25)
ln1
= ln2 ⇒ ∃i ∈ {1, . . . , len(M.ends(as))}·

πi(S.ends(ln1))
= πi(S.ends(ln2)).

5. An instance of a specializing classifier is also an instance of the specialized
classifier:

∀cf 1, cf 2 ∈ M.classifiers · cf 2 ∈ M.specs(cf 1) ⇒ (26)
S.instances(cf 2) ⊆ S.instances(cf 1).

3 This issue is discussed in terms of “complete” and “incomplete” class diagrams in [5].
4 The meaning of multiplicity for an association with more than two ends lacked pre-

cision in terms of its definition in UML prior to version 2.0. Possible interpretations
are discussed in detail in [7].

5 This condition does not have to be true for an association with a {bag} adornment.
However, for the sake of simplicity, such associations are not considered here.

www.manaraa.com

UML Static Models in Formal Approach 135

Definition 8 (Meaning). Let M ∈ Models and M : Models → P(States) be
the function which is defined as:

M(M) =def { S ∈ States : Sat(M, S) }. (27)

The value M(M) refers to the meaning of M.

5 Consequence

The mathematically defined semantics of a UML model allows for the reasoning
about the properties presented in a model. The properties which are implied
from the semantics of a given model, and are expressed in this model somehow
implicitly, may be shown directly in the form of a different model. The rela-
tionship between two such models is defined below as a relation of semantic
consequence: ⇒ ⊆ Models × Models. If for a given problem domain or system
the properties expressed in the model M1 are true and it holds M1 ⇒ M2, then
for the forementioned problem domain or system the properties expressed in the
model M2 are also true.

Definition 9 (Consequence). Let M1, M2 ∈ Models. The model M2 is a (se-
mantic) consequence of M1 and can be expressed as

M1 ⇒ M2, if and only if M(M1) ⊆ M(M2). (28)

The relation of consequence ⇒ is transitive in the set Models ((M1 ⇒ M2∧M2 ⇒
M3) ⇒ (M1 ⇒ M3)), so to show that one diagram ia a consequence of another,
it can be proved in several simpler steps. Below one of the basic reasoning rules
is formally presented. Some other examples are shown in Fig. 3. Many reasoning
rules, including proof of their correctness, are presented in detail in [10].

Theorem 1 (Extending multiplicity). Let M1, M2 ∈ Models be such that:

M1.classes = M2.classes, M1.mults
= M2.mults, (29)
M1.assocs = M2.assocs, M1.specs = M2.specs,

M1.ends = M2.ends,

and the models include the association AS ∈ M1.assocs, such that the multiplicity
on its end k in the model M1 is a proper subset of the multiplicity on this end
in the model M2:

πk(M1.mults(AS)) ⊂ πk(M2.mults(AS)), (30)

whereas the multiplicity specifications on the other ends of the association AS
and on the ends of the other associations are the same in both models:

πk(M1.mults(AS)) = πk(M2.mults(AS)), (31)
∀as ∈ M1.assocs \ {AS} · M1.mults(as) = M2.mults(as). (32)

Then the model M2 is a consequence of M1 (see Fig. 4).

www.manaraa.com

136 M. Szlenk

Removing a class

A

B

B

Removing an association

A

B C

A

B C

AS

Changing an association class into a class

A

B C

A

B C

D
D

Removing a relationship of generalization/specialization

A

CB

A

CB

Promoting an association

C

B D

AS

M1

B

M2 M1 {0}
A

A

N1

N2 N1 {0}

C

D

AS

M2

N2

Fig. 3. Examples of a consequence relationship

www.manaraa.com

UML Static Models in Formal Approach 137

A

B C

AS

M1

A

B C

AS

M2

M1 M2

Fig. 4. Extending multiplicity

Proof. Let S ∈ M(M1) (i.e. Sat(M1, S) holds). Within the framework of the
proof that Sat(M2, S) holds we will show that point 3 of the definition 7 is
satisfied. The satisfaction of the remaining points of this definition is implied
directly from Sat(M1, S) and the condition (29).

Let as ∈ M2.assocs, i ∈ {1, . . . , len(M2.ends(as))} and p ∈ product(as , i)
(from the condition (29) the function ‘product’ has the same form for both
models M1 and M2). If as
= AS or i
= k, then the forementioned point is
satisfied from Sat(M1, S) and the conditions (31) and (32). Otherwise, from
Sat(M1, S) it holds:

|{ ln ∈ S.instances(AS) : πk(S.ends(ln)) = p }| ∈ πk(M1.mults(AS)) (33)

and from the condition (30):

|{ ln ∈ S.instances(AS) : πk(S.ends(ln)) = p }| ∈ πk(M2.mults(AS)). (34)

5.1 Refinement

A refinement is a relationship that represents a fuller specification of something
that has already been specified at a certain level of detail or at a different seman-
tic level [9]. Fig. 5 shows seven simple models of the same problem domain but
at different levels of detail (at different stages of development). Each consecutive
model includes some more details about the modelled domain and thus can be
treated as a refinement of any of the previous models. At the same time, if a
given model is a refinement of another then they both are related by a conse-
quence relationship, as it is shown in the figure. Generally, if M1 ⇒ M2 holds
then the model M1 is at least as detailed (complete or precise) description of a
given problem domain or system as the model M2.

6 Equivalence

Two models with exactly the same meaning are a specific case of the relation of
consequence. Such cases are defined below as a relation of semantical equivalence:
⇔ ⊆ Models × Models. If M1 ⇔ M2 holds, then the models M1 and M2 are
completely interchangeable descriptions of a given problem domain or system
(or their parts).

www.manaraa.com

138 M. Szlenk

Event

Opening
0..1

Event

Keynote

0..11

Opening

Follows

Keynote

Event

0..1

0..1

1

►

Follows◄

Event

0..1

0..1

Follows◄
Opening

Fo
llo

w
s

◄

Event

Opening
0..1

1

Fo
llo

w
s

◄

Keynote

Event

Opening
0..1

1

Fo
llo

w
s

◄

Removing a class

Opening

Event

0..1

0..1

Follows◄

Removing a relationship of
generalization/specialization

Promoting an association

Removing a class

Removing a relationship of
generalization/specialization

Promoting an association

1. 2.

3.4.

5. 6.

7.

Fig. 5. Refinement vs. consequence relationship

Definition 10 (Equivalence). Let M1, M2 ∈ Models. The model M1 is (se-
mantically) equivalent to M2 and can be expressed as

M1 ⇔ M2, if and only if M1 ⇒ M2 ∧ M2 ⇒ M1. (35)

www.manaraa.com

UML Static Models in Formal Approach 139

6.1 An Example of Equivalence

For the specialization of an association, the UML metamodel [12] defines only two
syntactical constraints (see the definition 2): an association specializing another
association has the same number of ends and its ends are connected to the
same classifiers as in a specialized association or to their specializations. In fact,
these constraints partially reflect the semantics of a specializing association,
which instances are the specific cases of instances of a specialized association.
Between two such associations, however, other dependencies which have not been
taken into account in the UML metamodel and which can be shown using our
formalization also exist. Below we present one example of such dependencies.

Theorem 2 (Association Specialization vs. Multiplicity). Let M1, M2 ∈
Models be such that:

M1.classes = M2.classes, M1.mults
= M2.mults, (36)
M1.assocs = M2.assocs, M1.specs = M2.specs,

M1.ends = M2.ends,

and the models include the associations AA, AB ∈ M1.assocs, such that AB is a
specialization of AA:

AB ∈ M1.specs(AA), (37)

and for the multiplicity on the end k of the association AB the below condition
holds:6

πk(M2.mults(AB)) = (38)
πk(M1.mults(AB)) ∩ {0, . . . , max(πk(M1.mults(AA)))},

whereas the multiplicity specifications on the other ends of the association AB
and on the ends of the other associations are the same in both models:

πk(M1.mults(AB)) = πk(M2.mults(AB)), (39)
∀as ∈ M1.assocs \ {AB} · M1.mults(as) = M2.mults(as). (40)

Then the model M1 is equivalent to M2 (see Fig. 6).

Proof. Firstly, we will prove that M1 ⇒ M2 and then M2 ⇒ M1 hold.

M1 ⇒ M2. Let S ∈ M(M1). Within the framework of the proof that Sat(M2, S)
holds we will show that point 3 of the definition 7 is satisfied. The satisfaction
of the remaining points of this definition is implied directly from Sat(M1, S) and
the condition (36).

Let as ∈ M2.assocs, i ∈ {1, . . . , len(M2.ends(as))} and p ∈ product(as , i)
(from the condition (36) the function ‘product’ has the same form for both

6 If X is an infinite subset of N, then we assume {0, . . . , max(X)} =def N.

www.manaraa.com

140 M. Szlenk

B C
AA

E F
AB

A

M

N1

D

B C
AA

E F
AB

A

M

N2

D

N2 N1 {0,…,max(M)}

Fig. 6. Association specialization vs. multiplicity

models M1 and M2). If as
= AB or i
= k, then the mentioned point is satis-
fied from Sat(M1, S) and the conditions (39) and (40). Otherwise, if we use the
symbols:

αAA(i, p) =def |{ ln ∈ S.instances(AA) : πi(S.ends(ln)) = p }| and (41)
αAB(i, p) =def |{ ln ∈ S.instances(AB) : πi(S.ends(ln)) = p }|, (42)

it remains to be shown that the below holds:

αAB(k, p) ∈ πk(M2.mults(AB)). (*)

Because Sat(M1, S) holds, therefore:

αAA(k, p) ∈ πk(M1.mults(AA)) and (43)
αAB(k, p) ∈ πk(M1.mults(AB)), (44)

and from condition (37) and from point 5 of the definition 7:

S.instances(AB) ⊆ S.instances(AA). (45)

Then the following inequality holds:

αAB(k, p) ≤ αAA(k, p) (46)

and from the equation (43):

αAB(k, p) ∈ {0, . . . , max(πk(M1.mults(AA)))}. (47)

From the equation (44):

αAB(k, p) ∈ πk(M1.mults(AB)) ∩ {0, . . . , max(πk(M1.mults(AA)))} (48)

and the property (*) holds on the assumption (38).

www.manaraa.com

UML Static Models in Formal Approach 141

M2 ⇒ M1. From the assumptions of our theorem:

πk(M2.mults(AB)) ⊆ πk(M1.mults(AB)). (49)

If the above sets are equal, then M1 = M2. Otherwise, the assumptions of theo-
rem 1 are satisfied.

Example 1 (Imprecise Multiplicity Specification). Fig. 7 illustrates a situation
at a hypothetical scientific conference, where participants can be the authors
(or co-authors) of no more than two papers submitted to the conference. If the
submitted paper is accepted for the presentation during the conference, it is
presented by one of its authors. By virtue of theorem 2, one author cannot have
more than two presentations.

Author Paper
1..2

Accepted
0..3

1..*
Submits►

Presents►

1

Author Paper
1..2

Accepted
0..2

1..*
Submits►

Presents►

1

Fig. 7. Imprecise multiplicity specification

7 Conclusion

Theoretical research work in the area of UML formalization, although rather
difficult to be applied directly in software engineering practice, can be useful in
facilitating a better understanding of UML modeling concepts and can contribute
to improving the UML specification itself. In the paper we have proposed a
concise formalization of basic UML static models and have shown they can be
helpful in formal reasoning. The presented formalization can easily include other
elements of UML static models, which have not been addressed here, for example
an aggregation, a composition or abstract classifiers [10]. It was also used to
define the problem of the semantic consistency of individual models [11].

References

1. Aredo, D., Traoré, I., Stølen, K.: Towards a Formalization of UML Class Structure
in PVS. Research Report 272, Department of Informatics, University of Oslo (1999)

2. Berardi, D., Cal̀ı, A., Calvanese, D., De Giacomo, G.: Reasoning on UML Class Di-
agrams. Technical Report, Dipartimento di Informatica e Sistemistica, Università
di Roma (2003)

3. Egyed, A.: Automated Abstraction of Class Diagrams. ACM Transactions on Soft-
ware Engineering and Methodology 11(4), 449–491 (2002)

www.manaraa.com

142 M. Szlenk

4. Evans, A.: Reasoning with UML Class Diagrams. In: Second IEEE Workshop on
Industrial Strength Formal Specification Techniques (WIFT 1998) (1998)

5. France, R.: A Problem-Oriented Analysis of Basic UML Static Requirements Mod-
eling Concepts. In: Proceedings of OOPSLA 1999, pp. 57–69 (1999)

6. Funes, A., George, C.: Formalizing UML Class Diagrams. In: Favre, L. (ed.) UML
and the Unified Process, pp. 129–198. Idea Group Publishing (2003)

7. Génova, G., Llorens, J., Mart́ınez, P.: The Meaning of Multiplicity of N-ary Asso-
ciation in UML. Software and Systems Modeling 2(2), 86–97 (2002)

8. Gogolla, M., Richters, M.: Equivalence Rules for UML Class Diagrams. In: UML
1998 - Beyond the Notation, First International Workshop, pp. 87–96 (1998)

9. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual, 2nd edn. Addison-Wesley, Reading (2004)

10. Szlenk, M.: Formal Semantics and Reasoning about UML Conceptual Class Dia-
gram (in Polish). PhD Thesis, Warsaw University of Technology (2005)

11. Szlenk, M.: Formal Semantics and Reasoning about UML Class Diagram. In: Pro-
ceedings of DepCoS-RELCOMEX 2006, pp. 51–59 (2006)

12. UML 2.1.1 Superstructure Specification (formal/2007-02-05). Object Management
Group (2007)

www.manaraa.com

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 143–156, 2008.
© IFIP International Federation for Information Processing 2008

Does Test-Driven Development Improve
the Program Code?

Alarming Results from a Comparative Case Study

Maria Siniaalto1 and Pekka Abrahamsson2

1 F-Secure Oyj,
Elektroniikkatie 3, FIN-90570 Oulu, Finland
Maria.Siniaalto@f-secure.com

2 VTT Technical Research Centre of Finland,
P.O. Box 1100, FIN-90571 Oulu, Finland

Pekka.Abrahamsson@vtt.fi

Abstract. It is suggested that test-driven development (TDD) is one of the most
fundamental practices in agile software development, which produces loosely
coupled and highly cohesive code. However, how the TDD impacts on the
structure of the program code have not been widely studied. This paper presents
the results from a comparative case study of five small scale software develop-
ment projects where the effect of TDD on program design was studied using
both traditional and package level metrics. The empirical results reveal that an
unwanted side effect can be that some parts of the code may deteriorate. In ad-
dition, the differences in the program code, between TDD and the iterative test-
last development, were not as clear as expected. This raises the question as to
whether the possible benefits of TDD are greater than the possible downsides.
Moreover, it additionally questions whether the same benefits could be
achieved just by emphasizing unit-level testing activities.

Keywords: Test-Driven Development, Test-first Programming, Test-first De-
velopment, Agile Software Development, Software Quality.

1 Introduction

Test-driven development (TDD) is one of the core elements of Extreme Programming
(XP) method [1]. The use of the TDD is said to yield several benefits. It is claimed to
improve test coverage [2] and to produce loosely coupled and highly cohesive systems [3].
It is also believed to encourage the implementation scope to be more explicit [3] and to
enable more frequent integration [4]. On the other hand, it is claimed that rapid changes
may cause expensive breakage in tests and that the lack of application or testing skills may
produce inadequate test coverage [5]. TDD has also received criticism over not being very
suitable for systems such as multithreaded applications or security software, since it can-
not mechanically demonstrate that their goals have been met [6]. However, the scientific
empirical evidence behind all of these claims is currently sparse, and thus it is difficult to

www.manaraa.com

144 M. Siniaalto and P. Abrahamsson

draw meaningful conclusions. The studies dealing with TDD have mainly focused on
developer productivity and external code quality, whereas the TDD’s impacts on program
code have received less attention. The existing empirical evidence supports the claim that
TDD yields improved external quality (see a recent summary of the TDD studies in [7]).
However, it is not clear what has been the baseline for the comparison in those studies, e.g.
did any unit level tests exist previously? The results of the studies, which address TDD’s
design impact, are presented in Section 2 in more detail.

Despite the lack of solid empirical evidence, both the industry and academia are
keenly adopting test-driven development approaches. The purpose of this study is to
investigate whether and how the structure of the program code changes or improves
with the use of TDD. Five semi-industrial software development projects, containing
both students and professionals as research subjects, were involved in the comparison of
TDD and iterative test-last (ITL) approaches. Two of the projects used iterative test-last
(ITL) development technique and three utilized TDD. The metrics used for evaluating
the code are the traditional and widely-used suite of Chidamber and Kemerer (CK-
metrics) [8] strengthened with McCabe’s cyclomatic complexity metric [9]. To obtain a
balance, the dependency management metrics proposed by Martin [10] for studying the
code’s package structure, were chosen as well.

The results of this study partially contradict the current literature. In particular, the
case empirical evidence shows that TDD does not improve all the areas of the program
design as expected. The results imply that TDD may produce less complex code, but on
the other hand, the package structure may become more difficult to change and maintain.

The remainder of the paper is organized as follows. In the following section, the re-
lated work will be introduced. This is followed by an introduction to the metrics used to
study the impact of TDD on program structure. Section 4 presents the empirical results,
outlines the research design used to complete the study in a scientifically valid manner
as well as detailing the threats to the validity of the empirical results. Section 5 discusses
the novelty of the results in the light of existing studies and identifies the implications of
the presented results. The conclusion section summarizes the principal results and pro-
poses the potential future research avenues.

2 Related Work

In this section, the existing empirical evidence on the TDD’s impact on the program
design is presented. A total of five studies is included.

Janzen and Saiedian [11] compared the TDD and the ITL approaches using stu-
dents as research subjects. They calculated several structural and object-oriented met-
rics in order to evaluate the differences in the internal quality of the software. As most
of these results were within acceptable limits, there were some concerns regarding the
complexity and coupling in the TDD code.

Kaufmann and Janzen [12] conducted a controlled experiment with students as re-
search subjects comparing the design quality attributes of the TDD and the test-last
approaches (whether the test-last was used iteratively is not known). The design quality
was assessed with several structural and object-oriented metrics. They did not find any
differences in the code complexities, but they report that there were indications that the

www.manaraa.com

 Does Test-Driven Development Improve the Program Code? 145

design quality of the TDD code was superior. However, they also admit that this find-
ing may be due to the better programming skills of the subjects applying the TDD.

Steinberg [13] reports on the findings of the use of unit testing in the TDD style in
an XP study group. Although, Steinberg concentrates on discussing the results from
an educational point of view, his study also provides concrete experiences about the
effects of the novel use of TDD and is thereby included in this study. He notices that
the students tended to write more cohesive code when using TDD and the coupling
was looser, since the objects had more clearly defined responsibilities. Evidence to
support these last two claims was not provided, however.

In our initial study [7], we explored the effect of TDD on program design in semi-
industrial setting comparing two ITL and one TDD projects. The design impact was
evaluated using traditional object-oriented metrics. The initial results indicated that
TDD does not always produce highly cohesive code. However, we concluded that the
cohesion results might have been affected by the fact that all the developers in the TDD
project were less experienced when compared to the subjects in the ITL projects.

Müller [14] studied the effect of test-driven development on program code. He in-
cluded five TDD software systems of which three were student projects and compared
them with three open source-based conventional software systems. He assessed the
impact of TDD on the resulting code with Chidamber and Kemerer’s [8] object-
oriented metric suite and his own newly developed metric called assignment control-
lability. Müller reports that CK-metrics did not show any impact on the use of TDD
but that the new assignment controllability metric showed a difference i.e. the number
of methods where all assignments are completely controllable is higher for systems
developed by TDD.

3 Metrics to Study Changes in Program Structure

The demand for quality software has resulted in a large set of different metrics some
of which have been validated and some have not. Many of these metrics have been a
subject of criticism and their empirical validity has been questioned. There is an on-
going debate on which metrics are the best indicators of the software quality and
whether some particular metric even maps to the quality attribute it is supposed to
represent. However, in many cases the authors presenting the criticism have not been
able to propose a metric that would have solved the problem and would thereby have
been widely adopted. Due to these reasons, we wish to emphasize that the aim of this
study is not to validate or comment on the validity of any particular metric. The aim is
to study whether and how TDD affects the code and its structure, and therefore both
traditional and novel metrics were chosen for this study.

3.1 Traditional Metrics

The object-oriented metric suite, proposed by Chidamber and Kemerer [8], and
McCabe’s Cyclomatic complexity [9], were chosen as traditional representatives
since they have been and still are widely used. CK-metrics, validated in [15], measure
the different aspects of object-oriented construct. The suite contains six individual

www.manaraa.com

146 M. Siniaalto and P. Abrahamsson

metrics: weighted methods per class (WMC), depth of inheritance tree (DIT), number
of children (NOC), coupling between objects (CBO), response for a class (RFC) and
lack of cohesion in methods (LCOM). The suite was strengthened with Henderson-
Sellers’s lack of cohesion (LCOM*) [16. McCabe’s’ cyclomatic complexity measures
the number of independent paths through a program module, and it is proposed to
profile system’s testability and maintainability. Although it is one of the most used
and accepted of the static software metrics, it has also received criticism e.g. [17].

WMC measures the number of methods in a class and it is proposed to predict how
much time and effort is required to maintain the class. DIT measures the depth of
each class within its hierarchy, and its result shows how many ancestor classes can
potentially affect this class. NOC presents the number of subclasses for each class.
CBO presents the number of classes to which the class is coupled and it can be used
as an indicator of whether the class hierarchy is losing its integrity. RFC presents the
number of methods that can be executed in response to a message to the class. It is
proposed as an indicator of the complexity and testing effort. LCOM assesses the
similarity of the class methods by comparing their instance variable use pairwise. It is
proposed to identify classes that are likely to behave in a less predictable way, be-
cause they are trying to achieve many different objectives. The biggest flaws of
LCOM are that it indicates a lack of cohesion only when fewer than half of the paired
methods use the same instance variables and the fact that a zero value does not neces-
sarily indicate good cohesion, though a large value suggests poor cohesion [15, 16].
LCOM* measures the correlation between the methods and the local instance vari-
ables of a class. A low value of LCOM* indicates high cohesion and a well-designed
class. A cohesive class tends to provide a high degree of encapsulation.

3.2 Dependency Management Metrics

The dependency management metrics proposed by Martin [10] measure and charac-
terize the dependency structure of the packages. The suite includes: afferent coupling
(Ca), efferent coupling (Ce), instability (I), abstractness (A) and normalized distance
from the main sequence (D’). Ca counts the number of classes outside the package that
depend on the classes inside the package whiles Ce counts the number of classes in-
side the package that depend on the classes outside the package. These two values are
used when the instability (I) of the package is assessed. It has a specific range [0,1]
with value 0 indicating a maximal stability and value 1 indicating maximal instability,
i.e. no other package depends on this package. A package with lots of incoming de-
pendencies is regarded as stable, because it requires a lot of work to reconcile the
possible changes with all the dependent packages. The abstractness is simply meas-
ured by the ratio of abstract classes in a package to the total number of classes in a
package.

Martin proposes that the package should be as abstract as it is stable so that the sta-
bility does not prevent the class from being extended. The main sequence presents
this ideal ratio of stability and abstractness. Fig. 1 presents the main sequence and the
zones of exclusion around (0,0) and (1,1). Packages that fall into the zone of pain are
very difficult to change because they are extremely stable and cannot be extended
since they are not abstract. The zone of uselessness contains packages that are abstract
enough but useless since they have no dependents. The packages that remain near the

www.manaraa.com

 Does Test-Driven Development Improve the Program Code? 147

main sequence are considered to balance their abstractness and instability well. D’ has
the range [0,1] and it indicates how far a package is from this main sequence. Value 0
indicates that the package is directly on the main sequence whereas value 1 indicates
that it is as far away as possible.

Fig. 1. Distance from the main sequence [10]

4 Empirical Results from a Comparative Case Study

The comparative empirical evaluation of TDD in five small scale software develop-
ment case studies aims at exploring the effects of TDD on program codes. The layout
of the research design for the study is presented first and is followed by the empirical
results. The threats to validity are then identified and subsequently addressed.

4.1 Research Design

The research method for the three case projects is the controlled case study approach [18],
which combines aspects of experiments, case studies and action research. It is especially
designed for studying agile methodologies, and it involves conducting a project with a
business priority of delivering a functioning end product to a customer, in close-to-
industry settings. At the same time, the measurement data is collected for rapid feedback,
process improvement and research purposes. The development is performed in controlled
settings and may involve both students and professionals as developers.

All the case projects had the aim of delivery of a concrete software product to a
real customer. Two of the projects used ITL development and three utilized TDD:
Every project team worked in a shared co-located development environment during
the project. The projects were not simultaneous. All the projects continued for nine
weeks and followed an agile software development method, Mobile-D™ [19], which
provided a coherent framework for this study to compare ITL and TDD. Mobile-D™
is an agile method, which is empirically composed over a series of software develop-
ment projects in 2003-2006. The method is based on two-month production rhythm,
which is divided in five sub phases. Each of the sub phases takes from one to two

(1,1)

(1,0)(0,0)

(0,1)
The main sequence

A

I

Useless

Pain

www.manaraa.com

148 M. Siniaalto and P. Abrahamsson

weeks in calendar time. These phases are called set-up, core functionality one, core
functionality two, stabilize and wrap-up & release. Mobile-D™ adopts most of the
Extreme Programming practices, Scrum management practices and RUP phases for life-
cycle coverage. The method is described in pattern-format and can be downloaded from
http://agile.vtt.fi. The code development took place in controlled settings
using the same Mobile-D™ practices in all the projects. The only difference was that
projects 1 and 2 used ITL and projects 3, 4 and 5 used TDD. The implementations
were realized with Java programming language. The difficulty of implementation was
at the same level in all the projects, as they all were quite simple systems whose main
functionalities were to enable data storing and retrieving.

Table 1 provides a summary of the parts of the projects of which they are not con-
vergent to each other.

Table 1. Summary of the case projects

 Case 1 Case 2 Case 3 Case 4 Case 5
of developers 4 5 4 2 2
Developer type1 S S S P S
Dev. technique ITL ITL TDD TDD TDD
Iterations 6 6 6 4 4
Product type Intranet Mobile Intranet Internet Intranet
Total Product size
(LOC)

7700 7000 5800 5000 8900 (3100
new)

The development teams of the projects 1, 2, 3 and 5 consisted of 5-6th year Mas-
ter’s students. All the team members in projects 1 and 2, which used ITL, had some
industrial coding experience, while only one of the developers in project 3 and none
of the developers in project 5, which both used TDD, had previously worked in indus-
trial settings. However, all the subjects in project 3 and 5 were either Software Engi-
neering graduates or had a personal interest in programming. The team members in
case project 4, which also used TDD, were professional, experienced developers
whose normal daily work includes teaching and development assignments in aca-
demic settings. The developers were told and encouraged to write tests in all the pro-
jects regardless of the development technique used. In addition, in projects 3, 4 and 5
the use of TDD was stated as mandatory. Intranet applications were implemented in
projects 1, 3 and 5: in project 1 for managing research data and in projects 3 and 5 for
project management purposes. Case project 5 was a follow-up of case project 3. All
the systems consisted of server side and graphical user interface. A stock market
browsing system to be used via mobile device was implemented in project 2. The
biggest part concentrated on the server side and the mobile part mainly handled con-
necting to the server and presenting the retrieved data. Internet application for
information storing was realized in project 4. The implementation contained a server
side and a graphical user interface. However, to make the comparison of TDD and

1 S= Student, P= Professional.

www.manaraa.com

 Does Test-Driven Development Improve the Program Code? 149

ITL even, graphical user interfaces and the mobile client application part in project 2
were excluded from the evaluation.

4.2 Results

The results of the traditional and dependency management metrics are presented in
the following subsections. These results are discussed in more detail in section 5.

4.2.1 Traditional Metrics
The results of the traditional metrics are presented in Appendix 1a and 1b. The sig-
nificance of the differences between TDD and ITL were evaluated using the Mann-
Whitney U-test (Table 2). WMC, RFC and McCabe’s cyclomatic complexity were
used to assess the complexity of the code in this study. The WMC values do not differ
significantly between the development approaches while the RFC values seem to be
lower with TDD. The U-test confirms this distinction as statistically significant
(p<0.05). The McCabe’s cyclomatic complexity results are also lower with TDD and
are supported by statistical analysis as well.

The inheritance was studied using DIT and NOC. The DIT values are higher in
cases in which TDD was used. This difference is statistically significant. The results
of NOC cannot make any difference between the development methods and they are
quite surprising, as there are only a few outliners for each case.

The coupling was measured using CBO metric. The results do not differ significantly
between the development methods used, and the values are fairly low in all the cases.

The LCOM of CK-suite and LCOM* by Henderson-Sellers were used to find out
the cohesion characteristics of the code. The original LCOM does not reveal any
differences whereas the new LCOM* seem to be higher in TDD cases, though the
difference is not statistically significant.

Table 2. Mann-Whitney p-values for the results of the traditional metrics2

WMC DIT NOC RFC CBO LCOM

Cyclomatic
Complexity LCOM*

p 0,389 0,001 0,396 0,018 0,678 0,535 0.000 0,061

4.2.2 Dependency Management Metrics
The measures of the dependency management metrics are presented in Appendix 2.
The AC value is much higher in the TDD cases 3 and 5 meaning that there are more
classes outside the package that depend on the classes inside the package. Case 4
presents an exception to that, and therefore it cannot be concluded that TDD would
produce code with high afferent coupling. The EC values of all TDD cases are sig-
nificantly lower than the corresponding ITL cases, meaning that in TDD cases there
are fewer classes inside the package that depend on the classes outside the package.
The instability results show that the package structure of TDD code is more stable
than the ITL code. This means that the ITL packages are less dependent on other

2 The values where the difference is statistically significant are presented in bold.

www.manaraa.com

150 M. Siniaalto and P. Abrahamsson

packages. The measure of abstractness gives only slight indications that TDD may
produce packages with a higher level of abstraction. The results of the normalized
distance from the main sequence clearly differ between the ITL and TDD cases. Fig. 2
presents the scatter plot of the packages case-wise. The packages in the TDD code
seem to come closer to the zone of pain meaning that they are more stable but yet not
abstract. However, it should be noticed that the number of packages is much smaller
in the ITL cases and that can obviously bias these results.

Fig. 2. The distance from the main sequence

4.3 Threats to Validity

The interpretation of results is always more complex when students are used as study
subjects. However, the development environment was explicitly designed to relate
closely to that of an industrial development setting with strict time-to-market pres-
sures, regular working hours and, significantly, the developers were implementing a
real product to be delivered to a real customer. Höst [20] and Runeson [21] suggest
that students may provide an adequate model of professionals as similar improvement
trends may be identified between both groups. In addition, in industry, teams usually
have a mixed set of experiences and skills. The teams in the case projects included in
this study represented a similar mix. In addition one TDD team consisted of profes-
sional developers only in this study.

www.manaraa.com

 Does Test-Driven Development Improve the Program Code? 151

The differences between product types and concepts place a threat to internal valid-
ity of this study. We excluded graphical user interfaces and the mobile client applica-
tion part in case 2 to keep the comparison of the projects even. We also proceed in the
belief that all product implementations present a similar level of difficulty, as the
basic functionality in all the systems was simple data storage and retrieval, which was
realized using a model-view-controller structure. The fact, that project 5 is a follow-
up of project 3, can somewhat bias the results. However, in project 5, the implementa-
tion concentrated on totally new functionalities and the amount of new code is
significant in proportion to the total size of the code.

To control the subjects’ conformance to implement the tests and to use TDD cor-
rectly a person responsible for testing was appointed in all the projects. That person’s
responsibilities included monitoring the testing implementation. The developers were
not aware that the program design was to be compared as the measurements were
compiled after the project endings, which reduces possible observation effects. An-
other limitation relates to the size of the software product as well as the distribution of
the project work. All the case projects had less than 10 000 lines of code, their devel-
opment took around 1000 person hours and a single team in one location developed
the products. The impact of TDD on program design, however, should be visible from
the very start and thereby present in all of the studied projects.

5 Discussion

The traditional metrics indicated statistically significant differences in DIT, RFC and
cyclomatic complexity. These findings partly contradict the findings of Müller [14]
and Janzen and Saiedian [11]: Müller reports that in his study, none of the CK-metrics
showed differences between the development approaches used, whereas Janzen and
Saiedian noticed that the cyclomatic complexity was worse with TDD. Even though
DIT was increased with TDD and the difference statistically significant, it should be
noted that the level of inheritance was very low in all the cases included in this study
regardless of the development approach used. Therefore, it is too early to draw con-
clusions that TDD encourages to greater use of inheritance. In addition, the target
programs were quite small in all the cases resulting in a limited code base, which may
be one reason for the low inheritance.

Both, the RFC and cyclomatic complexity, were lower with TDD which may indi-
cate that TDD helps produce less complex code. In this context, it should be noted
that the corresponding values for ITL cases were not poor- TDD values just were
slightly better. Other traditional metrics did not reveal statistically significant differ-
ences. Although the medians of LCOM* results were higher, the statistical signifi-
cance of this difference is not high according to the U-test.

The results of the dependency management metrics indicate that TDD may cause
the software packages to become more stable. The results imply that TDD produces
fewer classes inside the package that depend on the classes outside the package. This
affects the instability result meaning that TDD produces more packages that are not
dependent on other packages but have many dependents. It can be argued that this
makes them more difficult to alter a posteriori. On the other hand, the high depend-
ency on other packages and the lack of dependents is not desirable either, because it

www.manaraa.com

152 M. Siniaalto and P. Abrahamsson

could cause the packages to change more easily. The measure of abstractness gives
only slight indications that TDD may produce packages with a higher level of abstrac-
tion, although the difference is not significant. The normalized distance from the main
sequence, which measures the ratio of instability and abstractness, differed clearly
from the proposed ideal ratio, as it indicated that the TDD packages are too stable in
proportion to their abstractness. Both these findings lead us to conclude that the pack-
age structure of the code produced with TDD may be difficult to change and maintain,
because it is likely to be concrete and have many dependents. This finding contradicts
the claims in the literature. On the other hand, the number of packages was clearly
higher in the cases in which TDD was used, and is likely to affect the results. i.e. in
the ITL cases, there were only two packages in both, while in the TDD cases the cor-
responding values were 4, 8 and 4. Case 5 is based on the “legacy” code of the case 3,
and this is probably one reason for the similarity between the results of these two
cases. However, these findings indicate that TDD may result in a greater number of
packages that are very concrete in relation to their stability. The fact that the results
were similar in all the TDD cases regardless of the professionalism and developers’
experience is also significant.

6 Conclusion

Test-driven development is claimed to be one of the most important practices of agile
development, and to address many problems at once. The current empirical research
has mainly focused on exploring the external quality effects of TDD. Despite the fact
that very little is known about its internal quality effects, academia and industry are
eagerly adopting the practice. This study aims at contributing to the empirical body of
knowledge by examining the effect of TDD on program design.

We studied the effect of TDD in five different software projects with students and
professionals as research subjects. The results provide some warning that the benefits
of TDD are not automatic and as self-evident as expected. Some of the findings imply
that TDD may produce a less complex code while other findings indicate the opposite
as there are indications that TDD may produce package structures that are more diffi-
cult to change. The existing empirical evidence supports the claim that TDD yields
improve external quality, especially when employed in an industrial context. This
finding clearly conflicts with the case study which identifies certain risks in the adop-
tion of TDD. Therefore, the present authors query whether the reported external qual-
ity benefits can be achieved with a more traditional approach to unit-level testing or
whether they are really due to TDD itself. We intend to use the results of this study as
a baseline for further empirical studies, with experienced developers employing TDD
in industrial settings. Our aim is to increase the understanding of test-driven develop-
ment in different real-life development settings and thereby contribute to the growing
body of evidence in the area of agile software development in general and test-driven
development in particular. We maintain that whether TDD ultimately improves pro-
gram design, remains to be answered.

www.manaraa.com

 Does Test-Driven Development Improve the Program Code? 153

References

1. Beck, K.: Extreme Programming Explained, 2nd edn. Embrace Change. Addison-Wesley,
Boston (2004)

2. Astels, D.: Test-Driven Development: A Practical Guide. Prentice Hall, Upper Saddle
River (2003)

3. Beck, K.: Aim, fire. IEEE Software 18(5), 87–89 (2001)
4. Beck, K.: Test-Driven Development By Example. Addison-Wesley, Boston (2003)
5. Boehm, B., Turner, R.: Balancing Agility and Discipline - A Guide for the Perplexed. Ad-

dison-Wesley, Reading (2004)
6. Stephens, M., Rosenberg, D.: Extreme Programming Refactored: The Case Against XP.

Apress, Berkeley (2003)
7. Siniaalto, M., Abrahamsson, P.: A Comparative Case Study on the Impact of Test-Driven

Development on Program Design and Test Coverage. In: First International Symposium
on Empirical Software Engineering and Measurement (ESEM 2007), pp. 275–284. IEEE
Press, New York (2007)

8. Chidamber, S.R., Kemerer, C.F.: A metrics Suite for Object Oriented Design. IEEE
Trans.Software Eng. 20(6), 476–493 (1994)

9. McCabe, T.J.: A Complexity Measure. IEEE Trans.Software Eng. 2(4), 308–320 (1976)
10. Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices. Pearson

Education, Upper Saddle River (2003)
11. Janzen, D.S., Saiedian, H.: On the Influence of Test-Driven Development on Software De-

sign. In: 19th Conference on Software Engineering Education and Training (CSEET
2006), pp. 141–148. IEEE Press, New York (2006)

12. Kaufmann, R., Janzen, D.: Implications of Test-Driven Development A Pilot Study. In:
18th Annual ACM Conference on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA 2003), pp. 298–299. ACM, New York (2003)

13. Steinberg, D.H.: The effect of unit tests on entry points, coupling and cohesion in an intro-
ductory Java programming course. XP Universe (2001)

14. Müller, M.M.: The Effect of Test-Driven Development on Program Code. In: Abra-
hamsson, P., Marchesi, M., Succi, G. (eds.) XP 2006. LNCS, vol. 4044, pp. 94–103.
Springer, Heidelberg (2006)

15. Basili, V.R., Melo, W.L.: A validation of Object-Oriented Design Metrics as Quality Indi-
cators. IEEE Trans.Software Eng. 22(10), 751–761 (1996)

16. Henderson-Sellers, B.: Object-Oriented Metrics: Measures of Complexity. Prentice Hall,
Upper Saddle River (1996)

17. Shepperd, M.: A critique of cyclomatic complexity as a softwaremetric. Software Engi-
neering Journal (1988)

18. Salo, O., Abrahamsson, P.: Empirical Evaluation of Agile Software Development: The
Controlled Case Study Approach. In: Bomarius, F., Iida, H. (eds.) PROFES 2004. LNCS,
vol. 3009, pp. 408–423. Springer, Heidelberg (2004)

19. Ihme, T., Abrahamsson, P.: Agile Architecting: The Use of Architectural Patterns in Mo-
bile Java Applications. International Journal of Agile Manufacturing 8(2), 97–112 (2005)

20. Höst, M., Regnell, B., Wohlin, C.: Using Students as Subjects—A Comparative Study of
Students and Professionals in Lead-Time Impact Assessment. Empirical Software Engi-
neering 5(3), 201–214 (2000)

21. Runeson, P.: Using students as Experiment Subjects - An Analysis of Graduate and
Freshmen Student Data. In: Empirical Assessment in Software Engineering (EASE 2003)
(2003)

www.manaraa.com

154 M. Siniaalto and P. Abrahamsson

Appendix 1a: The Results of Traditional Metrics

www.manaraa.com

 Does Test-Driven Development Improve the Program Code? 155

Appendix 1b: The Results of Traditional Metrics

www.manaraa.com

156 M. Siniaalto and P. Abrahamsson

Appendix 2: The Results of Dependency Management Metrics

www.manaraa.com

Measuring the Human Factor

with the Rasch Model

Dirk Wilking, David Schilli, and Stefan Kowalewski

Chair for Computer Science 11, RWTH Aachen University

Abstract. This paper presents a test for measuring the C language
knowledge of a software developer. The test was grounded with a web
experiment comprising 151 participants. Their background ranged from
pupils to professional developers. The resulting variable is based on
the Rasch Model. Therefore single questions as well as the entire test
could be assessed. The paper describes the experiment, the application
of the Rasch Model in software engineering, and further concepts of
measurement.

Keywords: Human factor, Software engineering experiment, Rasch
model.

1 Introduction

Having executed a few experiments (cf. [1],[2]), the authors had severe problems
using variables like time, lines of code or cyclomatic complexity. One major
point is that lines of code and cyclomatic complexity did not reveal a satisfying
correlation with the time needed to fulfill a software task. The scale of the
variables appeared problematic, too. For example cyclomatic complexity is only
useful to find very difficult functions with high values. The difference between
values cannot be interpreted, though. Thus, cyclomatic complexity is regarded
only dichotomous in nature and lacks precision. The reliability of the variables,
especially time, seems to be problematic. The reason is that while programming,
experiment participants appeared to be either lucky to find a solution from
scratch or to be unlucky and trying around. Thus, measurement of time has
a probabilistic aspect which lowers its precision. The impression arose that a
difference in the development ability between participants existed and had a
more severe influence on the course of the experiment. The problem encountered
when assessing participant knowledge was the imprecise variable of years of
development provided by each participant. The problem with this variable is
that even someone with 10 years of software development experience might not
be good at it. In order to assess the influence of personal ability on software
development, a solution for a measurement was sought in other disciplines in
the sense of [3].

Regarding human factors in software engineering, the number of sources for
this topic is scarce. One part of research based on the human factor is presented

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 157–168, 2008.
c© IFIP International Federation for Information Processing 2008

www.manaraa.com

158 D. Wilking, D. Schilli, and S. Kowalewski

in [4], where personality types in projects were identified with a Myers Briggs
Type Indicator. A further aspect of human centered research in software engi-
neering is the cognitive aspect found for example in numerous works by Wang
(cf. [5], [6]). In this area, software comprehension and reading techniques are
important categories. These different approaches are represented in [7] again. In
general, the human factor in software engineering is only covered lightly with
several directions of interests. HCI or education related research, were the hu-
man factor is much more present, are omitted here as they do not focus on the
software engineering process.

A general shift of the paradigm guiding software engineering is proposed by
Cockburn [8]. A human centered approach is described while omitting any form
of quantitative measurement. As this appears a step to far, a mathematical
foundation for quantitatively measuring person abilities for software engineering
is borrowed in the following.

2 The Dichotomous Rasch Model

In general, a test construction consists of several questions (called items from
now on) measuring one variable. In this case, the variable was “C knowledge”
which had to be measured using multiple questions. The answer to each question
was either correct or not and this was coded as one or zero respectively. Table 1
presents an excerpt of the data. The answers of a participant are coded in one
line, while each column shows the answers to the same question. The sum of
the correct answers for a column can be considered a difficulty statistics of a
question1. Simple questions are correctly answered by more participants than
difficult questions. In addition to the item difficulty, the sum of a single line
expresses the ability of a person. The more correct answers are given, the higher
is the ability of the person concerning the measured variable. In addition, items
as well as persons can be ordered based on these sums.

Table 1. Coding of correct and incorrect answers

Participant i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16 i17
71 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
131 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
34 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
114 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
126 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
134 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
9 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
37 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
70 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
84 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
20 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

1 Under the assumption that the Rasch Model holds.

www.manaraa.com

Measuring the Human Factor with the Rasch Model 159

The Rasch Model incorporates item difficulty σi and person ability Θv as
parameters influencing the probability of a correct answer. Thus, the probability
of a correct answer p1 in table 1 for a person v and an item i (a specific cell) is
calculated with:

log
p1

p0
= Θv − σi

with p0 as probability of a wrong answer. Rearranged to p1 it is

p1 =
exp(Θv − σ1)

1 + exp(Θv − σi)

This model constitutes the base for further tests and algorithms ([9],[10]) as
used in section 3.5.

2.1 Examples of Questions

The main challenge when creating a test for a variable is to find appropriate
questions of different difficulty for the variable. As in this case questions re-
garding the C language were gathered, technical concepts of that language were
mainly asked. These questions cover the preprocessor, pointers, call by value and
call by reference, dereferencing, dynamic memory allocation, function pointers,
operator precedence and so on. An example of a question is:

Please write down the output of this program.

int digit = 100;
int *No;

No = &digit;
printf("%d", No);

This question (item 10) aims at dereferencing, as in this case, the address of
the variable “digit” is saved to the variable “No”. Thus, the result was not a
concrete value, as the address of “digit” is not given in the program fragment.
Accordingly, all answers had to be open questions, in order to allow complex
answers. A benefit of this step is that guessing the correct result is difficult, as
simply inserting values of the program fragment often did not lead to a correct
result. A drawback is that each answer had to be evaluated on its own and no
automated analysis was done. Additionally, for some answers it was difficult to
judge them as correct or incorrect. This was countered with strict definitions of
correct answers.

Another example of a question is:

What kind of data structure can be stored with this definition?

char *(*(var[10]))(char *string1, char *string2)

www.manaraa.com

160 D. Wilking, D. Schilli, and S. Kowalewski

Here, the participant’s knowledge of function pointers is assessed (item 17).
This represents the most difficult question which was supposed to need a higher
degree of language knowledge. Nevertheless, it was assumed that programmers
that were used to the C language directly saw the structure within the code
line. Beginners and intermediate developers were assumed to not being used to
functions pointers and thus giving an incorrect answer.

2.2 Advantages of the Rasch Model

One benefit of the Dichotomous Rasch Model is its simplicity together with a
wide spectrum of post mortem analysis steps for a test. One example is the
LR test, which compares the Rasch Model with a perfect, saturated model.
If the likelihood of the Rasch Model significantly deviates from the saturated
model, the Rasch Model does not hold and is rejected. Other tests focus on the
homogeneity of persons and items. For example items are assumed to measure
the same variable and thus are considered homogeneous in this aspect. If an easy
item was too difficult for persons with higher person ability, the item might not
measure the same variable and thus should be excluded.

2.3 Application to Software Engineering

Regarding software engineering programming experiments, the effect strength of
novel techniques appears problematic. Novel techniques are always of major in-
terest, but their strength sometimes is so small, that other factors mask its effect.
One of the masking factors is assumed here to be the developer’s programming
ability. Experiences with software development projects, language knowledge,
algorithm knowledge, development environment knowledge, and other person
related abilities may have an effect on the time a participant needs to develop
a program. Indirectly, this is shown by performance estimation of developers as
done in [11]. A factor of three is reported as difference in performance with nat-
ural outliers to be found sometimes. Regarding this from a software engineering
view, a length of a development task might be depending on the person executing
the programming task. Finding a technique with an influence of approximately
the same strength as a factor of three appears at least problematic.

The use of the Rasch Model within practical software engineering is limited.
First of all, a developer’s knowledge is subject to change during a project. A
static assessment using a single test in the beginning thus is not appropriate.
In addition, software engineering practices, projects structures, roles etc. can be
changed swiftly in contrast to the abilities of a developer. Thus, person related
variables are not actively changeable and out of scope.

For academic purposes, person based measuring might allow a prediction of
development effort. A scatter plot of language knowledge with lines of code or
program memory usage might reveal a prediction for software development. In
addition, execution of a test consisting of a few questions is more economic than a
pretest consisting of a complete development task. Lastly, it must be pointed out
that person abilities are regarded an additional measurement variable to “hard”

www.manaraa.com

Measuring the Human Factor with the Rasch Model 161

variables like program reliability, project progress and time. It is regarded as an
additional control device for the internal validity of studies.

3 Experimental Evaluation for the Variable C Language
Knowledge

3.1 Overview

Before the actual evaluation was done, a pretest of 40 questions was done with
members of the chair. Here, redundant questions (in terms of difficulty) were
identified and removed. In addition, the test was subjectively regarded too dif-
ficult and easier questions were preferred. Finally, 17 questions were chosen for
the final test.

3.2 Participants and Background

The experimental evaluation of the C variable was done as an online-experiment.
The request for participation was posted in different bulletin boards. Regard-
ing the participants, the choice of bulletin boards for a call for participation
was critical. The aim was to include non-programmers, non-C programmers
and C-only programmers in the test. The following (german speaking) bul-
letin boards were selected: mikrocontroller.net, c-plusplus.de, chip.de, comput-
erbase.de, informatik-forum.at, and others with an additional group of local
dormitories. Most bulletin boards were selected because of the community they
represented. In addition to C language specific bulletin boards (mikrocontroller.
net), general programming boards (c-plusplus.de, informatik-forum.at), general
technical boards (chip.de), and non-technical boards (dormitories) are repre-
sented.

Regarding the participants’ background, 151 participants are included in the
study. Their general programming experience and special C language related ex-
perience is shown in Figure 1. The general knowledge of programming includes

Programming Experience in Years

Years

F
re

qu
en

cy

0 5 10 15 20 25 30 35

0
5

10
15

20

C Programming Experience in Years

Years

F
re

qu
en

cy

0 5 10 15 20 25 30

0
5

10
15

20
25

30

Fig. 1. Histogram of the number of years the participants were programming

www.manaraa.com

162 D. Wilking, D. Schilli, and S. Kowalewski

 Student Computer Science

 Student Physic

Student Mechanical Engineering

 Student Electrical Engineering

 Student

 Pupil

 Trainee Programming

 Teacher

 Programmer

M. Comp. Sc.

 Engineer

0 5 10 15 20 25 30 35 40

Fig. 2. Frequency of background categories for participants

some long term programmers with a language experience of over 20 years. Re-
garding C, knowledge of this language is not as common compared to the general
programming knowledge, which was expected.

The participants’ occupation is shown in Figure 2. The majority has an ed-
ucational background with most in this category being students of a technical
specialisation. About a third of the participants had a professional background
of software development with a few engineers included in that category.

3.3 Tasks and Procedure

The task the participants had to fulfill was to answer 17 questions in an online
questionnaire. In addition, some questions asked for the background of a person.
This was done to check the external validity of the experiment and to check for a
correlation of the measured variable and for example the years of programming.
All answers were treated anonymously. At the end of the experiment, a price of
e 50 was given to a randomly selected participant in order to increase motivation.
The average time to fill out the questionnaire was 22 minutes.

3.4 Internal and External Validity

The internal validity of the experimental study suffers from the low control
possibilities during the experiment. As the test itself was only a simple website
and accordingly no additional software could be installed, participants could
have used various sources like the internet sources, books, and other persons to
fill out the questions. Additionally, it could not be controlled if a person filled
out the questionnaire at a different computer twice.

www.manaraa.com

Measuring the Human Factor with the Rasch Model 163

The external validity relies on the type and quality of questions. These were
based on real source code which was checked with a compiler. The kind of ques-
tions aimed at several language aspects with the language itself being stan-
dardized. The participants had a different experience level of C as described in
section 3.2. In order to ground the variable, 151 participants appears as an ac-
ceptable number. One drawback is that the participants could not be selected,
but their participation was based on motivation possibly leading to above aver-
age values as only “good” developers participated.

3.5 Results

The first step of analysis is the computation of the difficulty of each item. This
is shown in table 2. The values are shown as logits of the probability:

Logit : log
p(Xvi = 1)
p(Xvi = 0)

with Xvi as the answer for a person v and an item i. A difficulty of zero indi-
cates an item where the probability of correctly answering it is the same as the
probability of incorrectly answering it. For the item parameter, negative values
indicate easier items and positive values difficult ones. For calculating the item
parameters, several algorithms and statistical programs exist. The program to
calculate parameters used here is MULTIRA2 and the results were validated
using the eRm [12] package from the statistics software R with an additional self
written script implementing the UCON algorithm as described in [10].

The next step consists of checking how well each item fits to the measurement
model. This can be done by so called infit and outfit statistics. Outfit is a chi-
square statistic which is sensitive for unexpected observations. Infit is a weighted
chi-square statistic sensitive to unexpected patterns of answers (cf. [10]). Pos-
itive values indicate an underfit, while negative values shown an overfit of the
according item. For the t-standardized row, values greater two are generally re-
garded problematic. Negative values lesser two are accepted because although
they indicate a misfit to the model, an increased discriminatory power of an
item is desirable. The problematic values are marked with a question mark.
These items should be reworked or simply removed from the test as done below.

A graphical representation of the fitness is shown in figure 3. Here, two artifi-
cial groups are created by dividing the participants at the median person ability
value. For each group, the parameter value is calculated and the corresponding
values are used as coordinates in the plot. Points ideally are on a line indicating
the same difficulty for both groups. While some question seem to have a good
fit, other certainly need to be refined in the future to increase the quality of
the test.

3.6 Test Revision

In order to increase test quality, three items are removed from it. Reasons for bad
items were questions which could be misinterpreted. As a correct understanding
2 http://www.multira.de

www.manaraa.com

164 D. Wilking, D. Schilli, and S. Kowalewski

Table 2. Item parameters and fitness values

Standard
Item Difficulty

Error
Infit t Outfit t

Item 1 -2.09 0.298 0.857 0.916
Item 2 -2.09 0.298 -0.413 -0.108
Item 3 -2.001 0.292 -1.152 -0.470
Item 4 -1.606 0.268 3.065! 2.277!
Item 5 -0.349 0.218 0.222 0.3
Item 6 -0.302 0.217 -2.009 -0.709
Item 7 -0.256 0.215 3.130! 3.279!
Item 8 -0.074 0.211 -0.216 -0.580
Item 9 0.057 0.208 2.373! 1.854
Item 10 0.311 0.204 -1.927 -2.311
Item 11 0.393 0.203 -2.446 -2.400
Item 12 0.555 0.201 -0.557 -1.088
Item 13 0.674 0.200 -2.127 -2.283
Item 14 0.831 0.190 0.797 0.210
Item 15 1.649 0.201 -1.530 -1.608
Item 16 1.729 0.202 -0.604 -0.645
Item 17 2.57 0.224 -0.858 -1.015

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Group with low ability

G
ro

up
 w

ith
 h

ig
h

ab
ili

ty

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

1

2

3

4

7 9

5

8

6

10

12

11

14

13

15

16

17

Fig. 3. Goodness of fit plot for two separated groups by median of person parameter

of the questions thus relied on accurate reading instead of C language knowledge,
some questions did not focus on the true variable to be measured by the test.
Especially for easy items, accurate reading seemed to dominate the difficulty of
an item. One easy question was item four:

www.manaraa.com

Measuring the Human Factor with the Rasch Model 165

Please compute the variable solution.
In which order was the term computed?

int solution;
solution = 8 / 4 * 2;

In this case, operator precedence was asked for which in this case is a simple left
to right execution. Although a simple question, describing the actual order was
not always done correctly by persons with high ability. Thus, the question had
to be removed. Item nine represents problems with correctly answering pointer
based questions. Here, person ability did not seem to protect against incorrect
code interpretation:

Please write down the value of v.

void funct(int *x){
*x = 5;
x = (int *)malloc(10000);
*x = 10;

}

MainProgram:
int v = 8;
funct(&v);
print-out of v

In this example, the participants had to have an eye on the address a value was
written to. As the variable x gets a new memory location, the second memory
writing is not done to the global address.

Table 3. Item parameters and fitness values for revised test

Standard
Item Difficulty

Error
Infit t Outfit t

Item 1 -2.542 0.324 1.729 1.354
Item 2 -2.542 0.324 0.312 0.918
Item 3 -2.435 0.316 -0.657 0.092
Item 5 -0.517 0.231 1.123 1.648
Item 6 -0.463 0.230 -1.239 -0.398
Item 8 -0.206 0.223 0.636 0.85
Item 10 0.226 0.215 -0.984 -1.699
Item 11 0.318 0.214 -1.940 -2.034
Item 12 0.498 0.211 0.004 -1.156
Item 13 0.630 0.21 -1.241 -1.993
Item 14 0.805 0.209 1.810 0.678
Item 15 1.709 0.21 -1.272 -1.423
Item 16 1.797 0.211 -0.071 -0.102
Item 17 2.722 0.233 0.353 -0.496

www.manaraa.com

166 D. Wilking, D. Schilli, and S. Kowalewski

●

●

●

●

●

●

−
3

−
2

−
1

0
1

2
3

0 1 2 3 4 5−6 7 8−9 10−12 13−25

Ability vs. Experience in C Programming

Years of Experience

A
bi

lit
y

Fig. 4. Boxplots for parameter estimates of C knowledge versus years of programming

By removing them, new parameter and fit values can be calculated as shown
in table 3. Three questions were removed in order to get a satisfying fit to the
model. The resulting difficulties show a lack of easy items between parameter
values of −1 to −3 which has to be fixed in the future.

Figure 4 shows the knowledge of the C language plotted against the number
of years of C programming. Here, a rough asymptotic correlation of the new
variable with C experience in years can be seen. As this fits the expectation of
the variable well, this gives a hint on the validity of the variable.

As the mean value of participant ability is at 0.61, the test was in general too
easy. As the test does not use extreme scores, it covers 3 to 93 percent of the par-
ticipants. Summing up, a c-knowledge metric was created which can be measured
in about 16 minutes. The resulting variable is interval-scaled and it is grounded
on 136 persons. Its value within experimentation has to be evaluated, though.

4 Further Concepts

C knowledge is rather easy to measure as the language C, its difficulties, syntac-
tical problems, and important technical parts are known. Quantification of this
variable thus was a conservative decision compared to other variables which are
presented in the following.

4.1 Viscosity

The term viscosity is taken from [13] and [14]. It describes the resistance of a
programmer to local changes. Measuring this attitude, although vague in nature,

www.manaraa.com

Measuring the Human Factor with the Rasch Model 167

could be possible in a controlled, variable oriented way. The attitude could be
assessed using situation oriented surveys where the programmer is required to
make a decision which might conflict with his resistance to change. Another way
to understand viscosity is the ability to find new and different solutions for prob-
lems in order to solve them. Testing this ability becomes difficult as questions
for this aspect should allow open answers to gather all possible solutions of a
problem.

4.2 Experience

One of the most powerful arguments of doing software engineering and omitting
its pitfalls is having sufficient development experience. Measuring this aspect
appears extremely difficult and methods to achieve this are mostly part of other
disciplines. Nevertheless every proposed factor of influence on a software engi-
neering project should be quantified and tested for effectiveness.

Regarding an assessment as a variable, some general thoughts are given here.
A test for experience might have the general form of a situational survey based on
decisions that must be made or a risk assessment that must be given. Questions
must be prepared in conjunction with software engineering experts in order have
a correct base for them. An interdisciplinary approach and continuous adaption
of questions to incorporate technical change seem to be appropriate for this
difficult variable.

5 Conclusions

This paper presents the Rasch Model as a way to assess person ability in a quan-
titative way. As a first step, C language knowledge was measured as a variable
using multiple questions. An experiment was executed using an online survey
attracting 151 participants. Using the rich evaluation possibilities of the Rasch
Model, problematic questions could be identified and removed from the test.

In addition, further concepts for measurement are discussed. These comprise
abstract ideas like programming viscosity and project experience. Although dif-
ficulties are expected when creating tests to assess these variables, an above
average effect strength on software projects is expected from these variables.

The questions needed for the test as well as the data can be obtained from
the authors.

References

1. Salewski, F., Wilking, D., Kowalewski, S.: The effect of diverse hardware platforms
on n-version programming in embedded systems - an empirical evaluation. In:
Proceedings of the 3rd International Workshop on Dependable Embedded Sytems
105/2006, Vienna University of Technology (2006)

2. Wilking, D., Khan, U.F., Kowalewski, S.: An empirical evaluation of refactoring.
e-Informatica - Software Development Theory, Practice and Experimentation 1(1),
28–44 (2007)

www.manaraa.com

168 D. Wilking, D. Schilli, and S. Kowalewski

3. Singer, J., Storey, M.A.D., Sim, S.E.: Beg, borrow, or steal (workshop session):
using multidisciplinary approaches in empirical software engineering research. In:
ICSE, pp. 799–800 (2000)

4. Karn, J., Cowling, T.: A follow up study of the effect of personality on the per-
formance of software engineering teams. In: ISESE 2006: Proceedings of the 2006
ACM/IEEE international symposium on International symposium on empirical
software engineering, pp. 232–241. ACM Press, New York (2006)

5. Wang, Y.: On cognitive properties of human factors in engineering. In: Fourth
IEEE Conference on Cognitive Informatics, 2005 (ICCI 2005) (2005)

6. Wang, Y.: On the cognitive informatics foundations of software engineering. In:
Proceedings of the Third IEEE International Cognitive Informatics 2004 (2004)

7. John, M., Maurer, F., Tessem, B.: Human and social factors of software engineering:
workshop summary. SIGSOFT Softw. Eng. Notes 30(4), 1–6 (2005)

8. Cockburn, A.: The end of software engineering and the start of economic-
cooperative gaming. Computer Science and Information Systems 1(1), 1–32 (2004)

9. Fischer, G.H., Molenaar, I.W. (eds.): Rasch Models. Springer, Heidelberg (1995)
10. Wright, B.D., Masters, G.N.: Rating Scale Analysis. Mesa Press (1982)
11. Prechelt, L.: The 28:1 grant/sackman legend is misleading, or: How large is inter-

personal variation really? Internal Report 18, Universität Karlsruhe, Fakultät für
Informatik (1999)

12. Hatzinger, R., Mair, P.: Extended rasch modeling: The erm package for the appli-
cation of irt models in r. Journal of Statistical Software 20(9), 1–20 (2007)

13. Hoc, J.M., Green, T.R.G., Samurcay, R.: Psychology of Programming. Academic
Press Inc., London (1990)

14. Rosson, M.B.: Human factors in programming and software development. ACM
Comput. Surv. 28, 193–195 (1996)

www.manaraa.com

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 169–181, 2008.
© IFIP International Federation for Information Processing 2008

Empirical Analysis of a Distributed Software
Development Project

Przemyslaw Cichocki and Alessandro Maccari

Nokia Siemens Networks,
Sienna, 39, 00833 Warsaw, Poland

{przemyslaw.cichocki,alessandro.maccari}@nsn.com

Abstract. In spite of the abundant research that promotes different methods for
software development, and the current method war amidst agile and disciplined
methods, little research is done to actually figure out whether real projects, car-
ried out in industrial environments, benefit more from either approach. This
paper analyses a real project team’s opinions and feelings about project man-
agement techniques, software development methods and cultural difference in a
multi-site project where traveling and communication are made difficult by re-
strictions and low-quality infrastructure. The different sites also worked in dif-
ferent time zones and with different working week patterns. The project team
members almost unanimously indicated that the presence of a local team leader
with authority and flexibility to cover a role that is not exactly as assigned in the
beginning, is key factor for the success of this sort of projects. While there was
no consensus on whether the project was agile or disciplined, evidence seems to
hint towards a more disciplined approach, probably as a compensation for the
higher degree of uncertainty that derives from the distributed setup. While the
findings of the case study cannot be extended to other organizations without
caution, we do infer a number of conclusions on cultural differences, project
management tools and techniques.

Keywords: Agile, Distributed development, Project management techniques
evaluation, Human factors.

1 Introduction

Current research on software development methods regularly produces a large amount
of material, such as proposals for new software project management methodologies,
variations to existing software development methods, enhancements to tools, sugges-
tions for improvement of good practices, and so on.

However, surprisingly little effort is spent on trying to apply research findings to
practical case studies and document the feedback thereby obtained for the use of the
community. This is probably for either of two reasons: the industrial world does not
apply the latest findings of research, or otherwise does not have the time or occasion
to report on the findings, which are mainly used (if at all) inside the company where
the researchers work.

Agile software development methodologies (like Scrum or Extreme Programming) pro-
mised to improve the way we develop software in industry. By enhancing communication

www.manaraa.com

170 P. Cichocki and A. Maccari

and putting individuals, rather than processes or tools, in the headlight, agile methods have
brought us closer to the fulcrum of software development: the human being, with his tal-
ents, defects, inconsistencies and creativity.

However, agile methodologies work best in small teams that are co-located, or at
least they can communicate easily and without boundaries. Whether they can be ap-
plied to distributed project teams is still a subject of research. It is also not clear
whether agile methodologies can be applied as effectively in teams where cultural
differences are vast, and where the working day and week do not overlap completely.

From common sense, it is not without a reason that a number of methodologists
advocate usage of more structured and disciplined methodologies [2] in situations
such as the one we take into consideration in the paper.

We present the results of a research that is focused on practical application of soft-
ware project management and software development techniques in a distributed team
setup. The team was distributed across three sites in two different cities, each located
in a different country. Traveling between the countries was made difficult by strict
visa regulations, and the quality of international telephone lines was generally low.
The customer and the project manager were located in one of the cities, while the
main development centre was located in the other city, alongside with some 70% of
the members of the development team.

In order to analyze the impact of the team distribution on the performance of the
members of the team, as well as their opinion on the effectiveness of certain software
development and project management methodologies and techniques, we carried out a
series of interviews with all the individuals that worked on the team for more than two
months.

We present a number of findings from our research, and make statements on valid-
ity threats, as well as on applicability of the findings to similar organizational envi-
ronments.

We do not claim that our research is complete. In fact, we believe that it poses the
basis for a family of experiments, as advocated by [4], aimed to characterize with
greater detail the phenomenon under study.

2 Research Background

2.1 Motivations

The issues that originate the need for this research are the following:

• The lack of rigorous experimental data on the industrial validity of certain project
management and software development methodologies and techniques: what tech-
niques do real software developers value most, and why?

• The uncertainty regarding the applicability of any of the known methods and tools
to a fully distributed team, which works on tight deadlines and with limited possi-
bilities to interact: will agile methods be more effective than structured ones in this
sort of case?

• The absence of definitive findings from existing research on whether an agile ap-
proach to project management produces better results (and is better appreciated)

www.manaraa.com

 Empirical Analysis of a Distributed Software Development Project 171

than a structured, disciplined approach, especially in the case of distributed project
team that works in a deadline-driven business environment.

• The insufficient number of studies that aim to understand how the usage of certain
project management techniques and methods affects the effectiveness of the soft-
ware developers (as perceived by them) and of the entire distributed team.

Most of these issues could be restated without limiting the scope to the organiza-
tion where the research work was carried out, or even to the entire telecom software
development domain as a whole.

However, the scope of this study will be limited to the organization where the pro-
ject team under study operates. We believe that a small study such as this one cannot
be generalized without exercising a lot of care, and that the conclusions of this re-
search should in general only be deemed valid within the specific environment under
consideration. Additional remarks on the validity of the study are made towards the
end of this paper.

2.2 Research Goal

This research work aims to answer the following high-level research questions:

What software development methods and tools are deemed to be most effective in a
distributed software development team?

What project management techniques and personal qualities of the project manager are
most useful in the environment where the project team under study had to operate?

How did cultural differences influence the project team’s life, and how can project
management methodologies maximize the positive (or minimize the negative) im-
pact of cultural differences?

How agile or disciplined is this sort of project deemed to be, and how is this judged
by the project team members?

2.3 Research Philosophy and Approach

Orlikowski and Baroudi provided an excellent classification of philosophies and ap-
proaches for information technology research [5].

Following their reasoning, we may list the following facts as characterizing our re-
search work.

• Ontologically, we do not make any assumption on the behavior of project team
members, nor on the reflections of project management or software development
methodologies on the project organization. We assume that such knowledge is un-
known, and try to deduce it from appropriate analysis of collected data.

• Socially, we do not assume any predefined regularity to rule the social reality
where the project team members work (and thus live). Anyone who has been in-
volved in software development for a telecom industry can confirm that this as-
sumption is true in most cases!

• Epistemologically, we believe that the phenomena of interest (for instance, the
relationship between team members, the consequences of adoption of certain pro-
ject management techniques and methods, and the intrinsic agility of the project)

www.manaraa.com

172 P. Cichocki and A. Maccari

can be understood by in-depth enquiries made with the development teams. From
such facts, our research work can be classified as interpretive.

The following sections outline the organization of the project team (research envi-
ronment), the empirical study design, and the method of collection of the information.
We also present our initial answer to the research problems stated before.

2.4 Project Team Environment

The project team operates in a real, industrial environment within Nokia Siemens
Networks, a major provider of telecommunication infrastructure and services, within
a single project. The purpose of the project is to implement and deliver a charging and
mediation solution for a customer located in the Middle East. The majority of the
project tasks consist in implementing custom add-ons or new features on top of an
off-the-shelf product platform.

Normally, in the charging and mediation domain it is difficult to reuse software
from other, similar projects that have been carried out in the past. This is due to the
fact that charging business models (and thus the technical requirements for the soft-
ware solution) vary substantially from customer to customer, and it is often cheaper
and more convenient to implement such features from scratch rather than reusing
work done before. We believe that the all-too-famous NIH (Not Invented Here) syn-
drome has not played a substantial role in these decisions.

The project under study is part of a larger programme that delivers a series of value
added service (VAS) solutions to the same customer. The project team environment is
typical of a large company that delivers critical software solutions to a customer that
operates in emerging markets: largely driven by deadlines that are so tight to seem
unrealistic, and in a generally unstable environment where requirements change often,
access to common resources is limited due to the lack of infrastructure, and pressure
on the project team members is applied by several stakeholders (both within and
without the organization that employs them), and not always with the knowledge or
approval of the project manager.

From the technical point of view, the purpose of the mediation solution is to collect
Call Data Records (CDR) from different network elements (like mobile switches,
GPRS nodes, MMS center. etc.), process their content according to the customer
requirements and send them in a format that is readable by the customer’s billing
system. The solution is based on a certain Nokia Siemens Networks product, on top of
which our team implemented software that enabled processing CDRs as per the cus-
tomer requirements.

At the time when the research work was carried out, the project had lasted around
12 months, and around 1300 man working days had been spent on it. It employed 12
people, out of whom 9 were interviewed for this research.

The team consists of one project manager, one or two technical architect (who own
the technical solution and had decision power on the technical architecture) and soft-
ware engineers numbering between three and eleven. The number of software engi-
neers has varied over time according to the need of the project and according to the
number of tasks that have had to be carried out concurrently. The project manager can
allocate and release technical resources on a relatively short notice.

www.manaraa.com

 Empirical Analysis of a Distributed Software Development Project 173

Most engineers, who have been assigned tasks that range from implementation to
testing and from documentation to deployment at site, belong to two contractor com-
panies that were based in the same city (but in different buildings) in the European
Union. One of the technical architects is co-located with the engineers. The project
manager is based in the same city in the Middle East as the customer. Depending on
need, a number of engineers have been based in the Middle East as well. On average,
approximately the project staff was based in Europe at a given point in time, with the
remaining half being based in the Middle East.

Travel between the two locations has been encouraged by the project manager, and
sufficient budget has been allocated for the project team to travel between the two
sites. However, visa restrictions and tight project delivery deadlines have advised
against excessive travel.

The quality of the telephone network between the two countries that host the pro-
ject staff is generally low, which discourages the usage of phone calls as a frequent
communication means. In the Middle Eastern location, the quality of internet service
is also somewhat low.

The project team included people of four different nationalities. However, the ma-
jority of the technical staff (architects, engineers) shared the same nationality and
mother tongue. The customer team and other internal stakeholders belonged to a large
number of cultures and nationalities. The English language was normally used for
communication between the team members and with most project stakeholders.

Customer and Nokia had to build new organizations from scratch. Although Nokia
was already present on the market it was only the mobile phone market and the Nokia
Networks (part of Nokia dealing with core network – since April 2007 it became part
of the Nokia Siemens Networks) was absent in the customer country.

Setting up the companies it is always a big challenge. In this case it was extremely
hard because of tight schedules and lack of resources. Both companies had to attract
employees not only from customer’s country but virtually from all over the world.

Organizational structure was well defined at high level in both cases and borders of
responsibility were clearly marked. However when it came to step down into organ-
izational chart it turned out that there were many communications problems. Due to
high pressure coming from tight schedules people were overloaded with work and
sometimes it was impossible to get the needed information immediately. This lead to
delays and in the end in giving up some of the project cycle phases (e.g. performance
tests) in order to meet the deadline. This situation applies not only to relation Nokia
Siemens Networks – customer but also internally. For example customer’s IT depart-
ment had problems with proper communication with customer’s marketing, in Nokia
Siemens Networks happened that one team has changed network device settings
without notifying other teams that relied upon those configuration.

All of this forced the project team subconsciously to adjust to the major principle
of Agile Manifesto – embrace the change [1]. Although that project was following the
certain process (classical approach: requirements gathering, solution proposal, im-
plementation, testing, deployment) the team was aware that despite the fact that re-
quirements was signed off the customer can change it at any moment. Obviously
project manager was trying to avoid that situation and teach customer that it should

www.manaraa.com

174 P. Cichocki and A. Maccari

follow the certain rules (by change request process for example) but sometimes it was
really inevitable – in the end it was our customer and project team should make any
effort to fulfill its needs.

3 Survey Characterization

This research work is carried out by means of a survey that involved the majority of
the team members who had technical roles (e.g. software developer, testing engineer,
requirement engineer, technical architect). The survey is articulated into nine ques-
tions, grouped in three categories:

1. Method and tools, including two questions that cover generic aspects of the applied
software development method.

2. Project management techniques, including four questions that cover specific as-
pects of project management.

3. Cultural differences, including three questions that focused on the impact of cultural
differences (mostly, the difference between European and Middle Eastern culture).

When designing the survey, we put particular emphasis on structuring questions so
that respondents would be encouraged to give a lot of details, and limited interrup-
tions even when the interviewer felt that the response was drifting out of the original
scope.

Questions were structured in an open way, which is typical of interpretive research.
We made every effort to avoid guiding the respondent towards a specific answer, or
towards a yes/no answer. When the answer was brief (e.g. when someone replied in
the lines of “everything worked well”) we tried to ask further questions, trying to dig
out a more detailed opinion.

Most of the respondents were interviewed face to face, with the exception of two
respondents who were interviewed remotely by means of email. Interviews lasted
around one hour each, and were conducted by both authors of this paper.

4 Results

Below the result of the survey are presented. The interview was conducted with nine
team members that were involved into project activities for two months at least.

4.1 Methods and Tools

This part of the survey was dealing with techniques and means that team found useful
for development and information sharing in the remotely managed project setup.

Most of the team members were contractors so they were originally employed by
the external companies (there were two external companies involved in this project)
and then indirectly hired by Nokia Siemens Networks. Due to transition period (Nokia
Networks was transforming into Nokia Siemens Networks) it was sometimes hard to
create the Nokia Siemens Networks accounts (e-mail, intranet access) for those
external employees. This was one of the major factors that people felt prevented them

www.manaraa.com

 Empirical Analysis of a Distributed Software Development Project 175

from being fully productive during the project. People did not have access to docu-
mentation and other resources like software updates and patches which ended up in
problems with keeping project deadlines.

The most difficult and challenging part of every project phase was the scope defi-
nition because of the communication problems mentioned above. During the imple-
mentation the main stress was put on the proper configuration of the mediation device
and testing. There was not much pure software development – mostly simple C++ and
shell script development tasks. For this reason, the first question (asking which soft-
ware development techniques helped most in a remote setting) was answered in an
insufficient manner. Either there was no answer or the question was misunderstood by
the survey respondents. However, one of the team members found the Extreme Pro-
gramming technique (pair programming) as useful during the deployment and functional
testing.

The second question in this section was referring to the tools that were found use-
ful in the information and knowledge sharing. Perhaps not surprisingly, the most
efficient way of communication was deemed to be face to face meetings. Despite the
fact that so-called modern channels of communications (fixed and mobile telephony,
internet) were at every team member’s disposal, this classical way of exchanging
information was found as the most reliable and effective.

Unfortunately, this way of communication could not be used very often from the
obvious reasons (distance, difficulty in travel, cost), so people have used email and
chat for their daily communication.

In particular, email was recognized to be a more formal way of communication.
Typical cases when email was mentioned to be effective are getting approval on
documents or requirements from the customer (where an email message constitutes a
sort of contract), and broadcasting of information (e.g. meeting minutes) to the entire
project team. Some respondents questioned the effectiveness of the usage of email for
person-to-person communication.

Chat, instead, was deemed more effective and useful for daily, informal information
exchange. A typical use case is when random questions must be asked to a certain ex-
pert about certain software functionality.

Version control systems (which the project used for documentation and source
codes) were also deemed helpful in information sharing. Unfortunately, most of them
required access to our company’s intranet account, which, as explained in the first
paragraph of this chapter, often meant that access to such resources could not easily
be achieved by some of the team members.

Finally, we prepared a Wiki website [3], to be used by the entire project, where the
project phases were briefly described and the latest documentation (requirement
specifications, solution descriptions, test cases, project management plan) was avail-
able for download. Wiki was listed also as one of the tools that contributed to better
knowledge sharing within the team, although it was mostly perceived as a placeholder
where to find project documentation, and not so much as a place where people can
actively (by editing the Wiki pages for example) influence the way the knowledge is
shared.

www.manaraa.com

176 P. Cichocki and A. Maccari

4.2 Project Management Techniques

The second part of the survey tries to understand how the project management tech-
niques and method that have been used in this project were perceived by the team
members.

The first question in this section is about the project management techniques that
did succeed in the interaction between the team, customer and project manager lo-
cated in different areas. It turned out that it is extremely important for most team
members to have a delegated person that would act as a local team leader in every site
where the team operates. That person should represent the project manager locally
and should be able to take proper actions once the situation requires them (e.g. ten-
sions with customer during project manager absence) and is accountable for their
consequences. Additionally he or she should also fulfill a role of the communication
gateway to the project manager but need of this was not as strongly desired as the
local leadership role.

Another question asked about the general characteristic of the project, focusing on
whether people thought it was disciplined or agile. Rather surprisingly, there was no
common ground in that matter between the team members. Some engineers claimed
that project was agile and some were claiming that it was very (too) disciplined. There
was also no pattern in the answers with distinction to the assigned role in the project.
The conclusion that we make out of this is that perhaps the concept of agility (and,
correspondingly, that of discipline) is not perceived in the same way by people.

The third question asked the team which of the project management phases (distin-
guished according to the PMI model) was made harder than usual in this project by
the distributed team setup. It was pointed out that especially the scope management
phase was more difficult to accomplish. This phase needed traveling as it required
meetings with customer in order to define the requirements for the given project
phase. Due to restriction mentioned earlier (visa, different time zones, shifted week-
ends) this task was performed very often under time pressure. Team members felt that
efficient scope and requirement management could not be carried out at a distance,
especially during the requirement elicitation phase and during the inevitable project
phases when the customer points towards a scope creep.

The last question of this section asked which personal qualities of the project team
members were most helpful in a remote project setup. Not surprisingly, trust and
commitment were listed most often in this case. People found it extremely comfort-
able to work in an environment where everybody could count on other team members
to help in case of issues. Also, the fact that some of the team members (e.g. technical
architect) acted as a local project manager for the team was deemed important: this
allowed people to have clarity about task assignments, and it was possible to make
important decisions quickly. Some people pointed out that having a competent substi-
tute person (when one of the key person for the project was on leave – e.g. project
manager) is crucial.

It is not easy to extract unique conclusions from this set of answers. However,
there seems to be evidence that the members of this team deem a more disciplined
approach (rather than a more agile one) necessary in this kind of setup. The emphasis
that was put in scope management, and the clearly expressed need for a local team
leader seem to point in the direction of a higher amount of discipline. Similarly, the fact

www.manaraa.com

 Empirical Analysis of a Distributed Software Development Project 177

that trust and commitment were deemed to be the most useful personal qualities for
team members points to the fact that the very nature of agile projects (based on fast
prototyping, trial and error and continuous requirement negotiation) does not fit a dis-
tributed team setup such as the one we implemented for this project.

4.3 Cultural Differences

In the third part of the survey, we investigated the team members’ opinion on the
cultural differences in the multinational environment that the project had to work in.

The first question concerned the cultural differences that could be spotted as far as
the work approach is concerned. Shifted working days were pointed here as the most
obvious difference. They are only three working days that overlap in Europe and
Middle East (Monday, Tuesday and Wednesday), and therefore activity planning
should take that into account. It happened sometimes that people in both countries
have to work overtime in order to finish their task in timely manner.

The issue of mother tongue was mentioned by several team members is not exactly
falling into cultural difference category but is worth mentioning. It was noticed that for
none of the team members English was a mother tongue. On one hand it was found as
an advantage as there was no need of strictly applying the grammar rules, proper vo-
cabulary which made communication process easier. On the other hand the knowledge
level of English between team members varied and it was pointed that sometimes it
could cause communication problems as well.

The second question queried on how cultural differences influenced everyday ac-
tivities. The surprising result here is that nobody felt the need to point out any cultural
factor that would be disturbing or (even more surprising) stimulating. In two or three
cases it was mentioned that a multinational team caused people to be more patient and
understanding to other team members. People understood that different nationalities
can have different approach to work in terms of pace and quality, and had to adjust
their expectations correspondingly.

The last question asked people what they thought should be changed in current
project setup in order to benefit more from the cultural differences. One of the issues
that surfaced here was the need for careful project management planning. This in-
volves taking into account the shifted working days, leaving enough time for cross-
team communication and reviews, allowing people to travel between sites when
absolutely necessary, and so on.

The conclusion we may infer from this section is that the fact that the team was
distributed among two different sites was judged to be more relevant than the fact that
the team had people coming from different cultures and countries. There seemed to be
no tangible consequence of cultural difference on daily work.

5 Validity

5.1 Internal Validity

Internal validity is the extent to which the survey results can be extended to similar
projects within the organization where the case study was carried out.

www.manaraa.com

178 P. Cichocki and A. Maccari

It seems like the very specific setup of the project makes it harder to find the gen-
eral pattern that could be applied to other cases. Several key factors (such as different
time zones, customer organizational inefficiencies, project team divided in three sites,
visa restrictions in customer country, etc.) are characteristic to this particular case, and
make the results of this survey hard to generalize, even inside our own organizational
environment.

However, there are some general conclusions that can be drawn from this setup and
that we believe may apply to other similar projects in our organization. These include
at least the following.

• Need of a local team leader in every site.
• Necessity of good information sharing tools.
• Flexibility in project task assignment (medley of roles).

When generalizing the other results that we explain above, we believe that we should
exercise caution, even internally. Further research is definitely needed before safe
statements can be made in this respect.

5.2 External Validity

External validity concerns the applicability of the survey results to different organiza-
tions, countries, teams and domains.

All the considerations that we have made for internal validity obviously hold when
considering external validity. Actually, we believe that even better care should be
exercised when extending the validity of the research outside the boundaries of our
organization or domain.

The environment where this project operates is fairly unique, as it involves a very
aggressive customer (mostly, in terms of deadlines), an organization (Nokia Siemens
Networks) that is relatively new to the country where the customer resides, a blend of
experience from different fields inside the project team, and a relatively young aver-
age age.

For these reasons, we feel that further research is required before any claims are
made about external validity. A series of similar case studies should be repeated across
different companies, countries and domains, and results compared before any generic
claim is made.

6 Conclusions

The analysis of the survey that was conducted among the team members gives indi-
rect clues about what can be deemed helpful in this sort of project setup. We now try
to answer the four research questions that were at the base of carrying out this case
study.

1. What software development methods and tools are deemed to be most effective in a
distributed software development team? Our research cannot give a definitive answer
to this question, as there has been little agreement among responders. The issue

www.manaraa.com

 Empirical Analysis of a Distributed Software Development Project 179

requires further research, though we can assert to some degree of certainty that the
usage of each tool (chat, email, phone conference, web sites) has to be disciplined in
order to avoid generating conflicting messages or annoyance.

2. What project management techniques and personal qualities of the project manager
are most useful in the environment where the project team under study had to oper-
ate? From the results of our research, we can state that in such environment having
a team leader in every site, and being able to trust other team members are by far
the most valued aspects. A blend of usage of different tools (email, teleconference,
chat, etc.) for different purposes can also solve most of the information sharing is-
sues. The team’s emphasis also fell on scope management, which may be an
indication that in distributed and dynamic environments where many variables are
subject to sudden change, and the possibility to control people is low, effective
management of scope is regarded to be the balancing power that makes projects
successful.

3. How did cultural differences influence the project team’s life, and how can project
management methodologies maximize the positive (or minimize the negative) im-
pact of cultural differences? From the results of this research, it appears that cultural
differences do not play a major role in this sort of environment, save perhaps for the
mother tongue. Actually, evidence points towards the conclusion that cultural differ-
ences can even be stimulating, and increasing the productivity and creativity of the
people that are involved in the project. This definitely advocates the need for further
research in this area, involving experts in sociology and psychology.

4. How agile or disciplined is this sort of project, and how is it perceived by the pro-
ject team members? From the answer to one specific question we infer that there is
no agreement on whether the project was agile or disciplined, which could point
out to different interpretation of the concepts of agility and discipline. However,
there seems to be evidence that points towards a more disciplined approach, as this
guarantees better scope management, more effective assignment of management
roles to different sites and emphasizes trust and commitment.

What made this project successful? It is hard to draw an itemized list of success
factors in this case. Undoubtedly, it was a mixture of project management techniques,
tools and the unique personalities of the people involved in project activities.

First of all, the role of the team leader cannot be underestimated. In every team
there should be a person who should act as a local team leader, sometimes taking the
responsibilities of the project manager for the tasks like work assignment. Due to
limited direct contact with the customer (visa restrictions) it was important that the
person who was in charge of defining the scope of the project phase (requirements
gathering and documentation) was able to work efficiently under time pressure. As it
was described above, face-to-face contact was preferred way of communication, and
the requirement gathering phase was found the hardest to perform as it was done
remotely.

Another important factor was information sharing among team members and tools
that were used for it. Team members were up to date with the current project activities
as well as with the future plans for the project. It was done by setting up weekly

www.manaraa.com

180 P. Cichocki and A. Maccari

teleconferences gathering all the people involved in the project and allowing to dis-
cuss current issues and actions. It was also important to grant access for everybody to
necessary resources like corporation intranet, email, product documentation etc.. Lack
of these facilities can lead to frustration and lower motivation of the team.

Finally, the most important success factor was unique set of people. It was not
mentioned accidentally in the survey that one of the qualities that helped to overcome
the distance was trust and commitment. When people can count and rely on each
other they can perform very well despite the obstacles.

References

[1] Martin, R.C.: Agile Software Development, Principles, Patterns, and Practices. Prentice Hall,
Englewood Cliffs (2002)

[2] Boehm, B., Turner, R.: Balancing agility and discipline. Addison-Wesley, Reading (2004)
[3] http://en.wikipedia.org/wiki/Wiki
[4] Basili, R.V., Shull, F., Lanubile, F.: Building Knowledge through Families of Experiments.

IEEE Transactions on Software Engineering 25(4), 456–473 (1999)
[5] Orlikowski, W.J., Baroudi, J.J.: Studying Information Technology in Organizations: Re-

search Approaches and Assumptions. Information Systems Research 2(1), 1–28 (1991)

Appendix: Survey Structure

This appendix reports the questions that composed the survey in the exact form as the
survey respondents heard them during the interviews. The questions were divided into
three categories.

Method and Tools
1. What methods and techniques (in terms of software development method) that you

used in the project were particularly useful in a remote development setting?
2. Which tools you felt contributed to the information sharing (e.g. teleconferences,

emails, chat, wiki, configuration management, etc.) and which did not? Please mo-
tivate your answer.

Project Management Techniques
3. What project management techniques (e.g. scope management, resource manage-

ment, task and assignment management, delegation, customer relationship manage-
ment) facilitated the interaction between the project manager and customer (located
in the Middle East) and the team (located in Europe)? what instead did not work?

4. Was this project more agile or more disciplined? Why? How would you improve
the approach?

5. Which phase of project management (scope management, time management, re-
source management, communication management, risk management, quality man-
agement, etc.) was made harder by the distance between you and the project manager
and what instead was not influenced?

www.manaraa.com

 Empirical Analysis of a Distributed Software Development Project 181

6. What personal qualities of the project manager, architect and developers helped
most overcome the distance? To what extent did the roles deviate from the job de-
scription? For instance, did the architect sometimes act as project manager?

Cultural Differences
7. What cultural differences did you notice (as far as work approach is concerned) in

your multi-national team (please take into account the customer team as well)?
8. Which of the differences did you find stimulating and having good influence on

project performance? Which not? Why?
9. Having the current experience in place would you change anything in project man-

agement approach, used tools or methodologies in order to diminish the negative /
strengthen the positive influence of the cultural difference?

www.manaraa.com

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 182–195, 2008.
© IFIP International Federation for Information Processing 2008

Extending Software Architecting Processes
with Decision-Making Activities∗

Rafael Capilla and Francisco Nava

Department of Computer Science, Universidad Rey Juan Carlos,
c/ Tulipán s/n, 28933, Madrid, Spain

H{rafael.capilla,francisco.nava}@urjc.esH

Abstract. The traditional perspective on software architecture has paid much
attention to architecting as a development process aimed at creating the archi-
tecture of a software system, as well as the documentation used to communicate
the architecture to the stakeholders by means of several architectural views. Re-
cently, the software architecture research community has faced the need to re-
cord, manage, and document the design decisions and the rationale that lead to
such architecture. Because architectures are the result of a set of design deci-
sions, this design rationale must be properly recorded and managed as a com-
plementary process to the modelling activity. In this paper we detail different
types of decision-making activities aimed at creating and using design decisions
and how these can be supported with tool support.

Keywords: Software architecture, Architecture design decisions, Architectural
knowledge, Architecting activity, Maintenance, Evolution.

1 Introduction

Software architectures have been successfully used in the past decades as the cen-
tral cornerstone for describing the main functional parts of a software system [2],
and the interests of different stakeholders are usually represented in the architecture
by means of different architectural views [12], [17]. The more traditional perspec-
tive on software architecture [2] has paid much attention to modeling and docu-
menting tasks while they have neglected the rationale that led to such designs.
Recently, this point of view is changing to include the creation and use of architec-
tural knowledge (AK) as a first class entity that should be recorded. As all architec-
tures are the result of a set of design decisions [3], the impact and benefits of
recording this AK seems to be promising for maintenance and evolution activities.
Hence, as software systems evolve, the decisions made during the life of the system
should evolve accordingly to the changes performed on the system and to new cus-
tomer needs. Therefore, a continuous decision-making process happens to meet the
goals specified in the requirements.

Recently, the software architecture community has recognized the need to record,
manage, and document explicitly the rationale that lead to the creation of any software

∗
 This work is partially funded by the PILOH project of the Spanish Ministry of Education and
Research programme under grant number URJC-CM-2006-CET-0603.

www.manaraa.com

 Extending Software Architecting Processes with Decision-Making Activities 183

architecture. Architecture design decisions become now more important as they bridge
the gap between requirements and architectural products. Thus, also traceability in
maintenance activities can benefit from this approach.

In this paper we focus on those processes needed to deal with design decisions as
a complementary product of the architecting activity. Also, we describe how some
of these processes are supported by ADDSS, a web-based tool for recording, man-
aging, and documenting design decisions. The structure of the paper is as follows.
Section 2 discusses the representation of design decisions in software architecture.
Section 3 deals with the processes that affect the creation and use of AK. Section 4
describes which of the processes mentioned in Section 3 are supported in the
ADDSS approach. Section 5 provides some conclusions and outlines possible future
work.

2 Representing and Creating Architectural Design Decisions

In the early 90s, Perry and Wolf [15] mentioned the rationale and principles that
guide the design and evolution of software architectures. This rationale is used in
the reasoning activity as the underlying reasons that motivate the selection of a
particular architecture. These ideas have been detailed in [6] to state the need for
documenting explicitly architectural design decisions, but not the processes that
lead to them. Nevertheless, prior to the definition of the activities that should take
place in the creation of such architectural knowledge (AK), it seems necessary to
know which kind of information we should represent as part of the design rationale.
Design rationale is the justification behind decisions, and different authors have
addressed the problem to reflect design decisions as part of the architecture docu-
mentation [8]. Tyree and Akerman [19] provide a template list of items for charac-
terizing architectural design decisions. In [18] the authors mention the need for
documenting design decisions, because documenting architectural descriptions
often based on a component & connector view is not enough. One of the reasons to
store this AK comes from the need to carry out highly-cost maintenance processes
motivated by architecture erosion or from non existing designs because design deci-
sions were never recorded. Others [16] focus on the explicit representation of as-
sumptions as a way to make explicit the tacit knowledge which is often implicit in
the architect’s mind. In [5], the authors propose a list of attributes which classifies
design decisions into mandatory and optional attributes that can be tailored for each
particular organization, as well as a set of attributes specific for describing the
evolution of architectures. A meta-model combines the characterization of design
decisions with the processes used to manage such knowledge. Similarly, the archi-
tecture-centric concern analysis (ACCA) method [21] uses a meta-model to capture
architectural design decisions and linking them to software requirements and archi-
tectural concerns. The approaches mentioned before highlight the relevance for
characterizing the architectural knowledge, but the processes that lead to it are only
slightly mentioned.

www.manaraa.com

184 R. Capilla and F. Nava

2.1 Lifecycle for AK Creation

In addition to the AK representation, creating and using AK has to be integrated under
the “natural” lifecycle of the more traditional architecting and engineering activities.
To date, most software architects have seen architectures as a “product” that has to be
maintained and evolved as requirements change. According to [3], [14], architects are
changing their more traditional perspective by considering architectural knowledge as
a product, which should be seen as first class co-product of the architecting activity in
order to avoid knowledge vaporization. In addition, architectural knowledge as a
process [14] “deals with the processes that create and use such AK during the soft-
ware development lifecycle”. Use cases, methods for recording and discovering
knowledge, tools and services for supporting the usage of AK fall on this category. In
this new scenario, the stakeholders involved in the development of any software ar-
chitecture may act as “producers” and “consumers” of this AK. According to the
classification defined in [14], architecting and sharing activities belong to the pro-
ducer side while learning and assessment belong to the consumer side. These activi-
ties have been roughly described in [14] but they need some refinement in order to
understand the detailed processes concerning to the creation of AK. Our main contri-
bution in this paper focuses on a more detailed list of the processes and sub-processes
that happen during the decision-making activity, as a refinement of the main ones
described in [14], such as we outline in next section.

3 Activities for Recording and Using Architectural Knowledge

The activities concerning with the creation of AK are described in table 1. AK.
Hence, before a decision is made, a reasoning activity may take place [13]. This rea-
soning process is based on the rationale and the motivation that guides a decision. The
rationale often relies on assumptions made as well as on the analysis of the pros and
the cons (i.e.: the implications) of each particular decision. Moreover, we have to take
into account the existence of constraints for the decisions as well as the dependencies
that may appear between current and previous decisions. Once a decision is made, we
should give a concrete status (e.g.: pending, approved, rejected, obsolete) and store it
in a readable form for subsequent use. Often, before a choice is selected, several al-
ternatives can be considered. The evaluation of these alternatives means to deal with
new decisions and sometimes search for codified AK. In addition, evaluation and
assessment activities may happen and used to evaluate between different candidate
solutions. Also, depending on the specific phase or project milestone, not all the exist-
ing AK may be needed at the same during the decision making activity. For instance,
we can store a minimum set of attributes to characterize a design decision during the
initial development phase, but a subsequent testing or maintenance activity may need
extra attributes (e.g.: responsible, status). In practice, as much of these attributes are
stored during the creation of AK more comprehensible would be the decisions made.
For each main category of the processes defined in [14] (marked with an asterisk in
the tables) we have detailed the set of activities and sub-activities that we believe
belong to each category.

www.manaraa.com

 Extending Software Architecting Processes with Decision-Making Activities 185

Table 1. Activities for creating architectural design decisions

ARCHITECTING (*): Creates and stores AK
Activity Sub-activities level 1 Sub-activities level 1

Make decision

Reasoning

(rationale, motivation)

Select the best alternative

Make assumptions

Analyze implications

Constraint and dependency

analysis

Evaluate AK

Validate before storing
Characterize decision Assign status and other

relevant items

Store and document deci-
sions

Evaluate AK Reuse AK
Evaluate alternatives

Search, Discovery
Assessment / Learn

Once an amount of decisions has been stored, this AK can be shared with others.
The processes that fall in this category are defined in table 2. In many cases, the
boundary between producers and consumers for sharing activities is not clear in many
cases. Producers share available knowledge to other stakeholders. AK producers may
act also as consumers of codified knowledge. Moreover, architects may share AK
with other architects, all of them participating in the development process. For in-
stance, during architecting a well-known pattern can be shared to other architects to
discuss its applicability as a suitable design solution. In other cases, once a set of
design decisions are made and the first version of the architecture is built, a subse-
quent maintenance process might need to share some of the decisions made with
others interested in learning from previous experiences. From our point of view,
knowledge sharing can be a more passive task when the stakeholders review existing
AK or even when they query a knowledge base. A more pro-active approach can take
place if we want to publish knowledge to others that act as subscribers of such AK
(e.g.: use of RSS contents for distributed teams). Active publishing-subscribing
strategies as well as discussion groups can provide a more dynamic usage of codified
knowledge. Moreover, brainstorming meetings can be organized to share and com-
municate this knowledge. In this case, knowledge sharing requires the participation of
at least two or more stakeholders to achieve the communication goal, while a review
activity can be done by a single stakeholder that learns from available knowledge.

Table 2. Knowledge sharing activities

SHARING (*): Make AK available to others
Activity Sub-activities level 1 Sub-activities level 2

Review AK Analyze documents or exist-
ing AK stored

Search, Discovery

Communicate AK Subscribe to AK
Organize meetings

Pull/ Push (RSS)
Discuss / explain

www.manaraa.com

186 R. Capilla and F. Nava

Complementary to AK producers, knowledge consumers include assessing and
learning activities, as shown in tables 3 and 4. Assessment provides the guidelines and
recommendations for selecting the best or the optimal decisions among several. The
expertise of the architects and the results from evaluating different alternatives usually
drive these assessment activities. Table 3 shows different assessment activities and
sub-activities to assess before or after decisions are made. Sometimes, assessing about
decisions needs from a previous learning activity in order to perform the right assess-
ment. In such scenario we could perform assessment during architecting to select the
best decision or during a learning activity to teach about future decisions, as architects
can learn from right and wrong experiences. Assessing about AK can be used to know
the viability of future decisions and provide further recommendations.

Table 3. Assessment activities with architectural knowledge

ASSESSING (*): Recommends the selection of a decision
Activity Sub-activities level 1 Sub-activities level 2

Evaluate

Evaluate impact of implications
Constraint analysis
Evaluate impact of quality attrib-
utes

Analysis of alternatives
Simulation
Impact analysis

Review Check for completeness and
correctness of AK

Validate Check decisions against require-
ments and architectural products
Check the integrity of the depend-
encies between decisions

Traceability

Recommend Communicate to stakeholders the
results of the assessment activity

The last activity concerns to learning tasks. Architects become more expert consum-
ers of AK as they learn from past experiences. Learning improves also the career of
architects from beginners to more expert ones. As a result, future architecting activities
are expected to be performed better that initially. As shown in table 4, some learning
activities include the evaluation of stored AK as a way to learn which of the decisions
made were right or wrong, or to detect inconsistencies in the decision model.

From our point of view, assessment and learning are often intertwined to understand
the choices made. The aim of training activities is to teach about past experiences,

Table 4. Learning activities from previous architectural knowledge

LEARNING (*): Understand why decisions were made
Activity Sub-activities level 1 Sub-activities level 2

Evaluate stored AK Compare the decisions to prod-
ucts and requirements
Detect wrong decisions or incon-
sistent AK

Follow trace links
Search-Reuse AK

Training Teaching about past decisions
and experiences

Search-Reuse AK
Assessment / Learn

www.manaraa.com

 Extending Software Architecting Processes with Decision-Making Activities 187

but some search could be done to retrieve the decisions made that will be used in
learning activities. Some of the sub-activities defined in the tables described before
are interrelated or even duplicated because certain tasks in the producer side are en-
acted in the consumer side and vice-versa. Figure 1 describes the relationships be-
tween the activities defined in the tables and different users can participate either as
consumers and producers, depending on their specific roles.

Fig. 1. Activities for producing and consuming architectural knowledge

4 Making AK Explicit with Tool Support

Previous efforts [10] analyzed tool support for design decisions in software architec-
ture. Current technology for supporting such AK is still young and immature, but
recent proposals are rapidly gaining popularity to introduce design decisions within
the architecting process. Some of the tools that have been recently proposed to store
and use design decisions are the following.

Archium (http://www.archium.net) is a research prototype [9] for supporting de-
sign decisions as first class entities. Archium defines a meta-model which is com-
posed of three sub-models: an architectural model, a design decision model, and a
composition model to compose design fragments (an architectural fragment defining a
collection of architectural entities). Archium is also a component language which
extends Java for describing components, connectors, and design decisions with tool
support. Archium integrates an architectural description language (ADL) with Java to
describe the elements from a component & connector view but making explicit the
architectural design decisions and its rationale [11]. Archium supports the trace from
requirements to decisions and is able to check which of these requirements are
addressed by one or several decisions. Archium provides visualization facilities for

www.manaraa.com

188 R. Capilla and F. Nava

the decisions made using a dependency graph, which can be used to assess about the
consequences of the decisions.

PAKME [1] is a web-based architecture knowledge management tool for providing
knowledge management (KM) for software architecture development. PAKME has
been built on the top of Hipergate, an open source groupware platform which includes
collaborative features, project management facilities and online collaboration tools for
decentralized teams. At present, PAKME consists of five components: the user inter-
face implemented with JSP and HTML pages, the KM component which provides the
services necessary to store and update AK, the search component which defines three
different searching mechanisms (i.e.: keywords, logical operators, and navigation) for
retrieving artefacts, the reporting component which provides services for representing
AK and describing the relationships between different architectural artefacts, and the
repository management which offers the services needed to maintain the data (cur-
rently implemented in PostgreSQL). PAKME uses different templates for capturing
and representing the knowledge and the rationale associated to architectural design
decisions.

The Architecture Design Decision Support System (ADDSS), available at,
(http://triana.escet.urjc.es/ADDSS) [4] is an open web-based tool developed in PHP,
HTML and MySQL, and focuses on recording, managing and documenting architec-
tural design decisions under an iterative development process. ADDSS follows the
natural way in which architects usually work, that is, creating the architecture under
successive iteration for which one or several decisions are made. The design decisions
are stored in plain text in MySQL databases. For each set of decisions, an image of
the architecture can be uploaded as a thumbnail image. ADDSS does not directly
cooperate with other modelling or requirements tools, but it allows uploading images
exported with architecture modelling tools. In ADDSS, decisions are motivated by the
requirements already stored in the tool. Also, basic dependencies can be established
between a decision and previous ones, as a way to create a network of decisions. The
result of the decision-making process can be easily visualized and the user can navigate
and browse both the resulting architectures and the decisions made. Design decisions in
ADDSS decisions can be based on the selection of well-known patterns already stored
and a free text description is used to explain the decision made. Finally, PDF documents
containing the design rationale of the architecture can be automatically generated using
the fpdf library for PHP.

4.1 New Features in ADDSS 2.0

The need to count with adequate tool to support new features for characterizing AK,
led to evolve the first version of ADDSS. Therefore, we have recently released
ADDSS 2.0 with the following additional features respect to the previous version.

• Visualization capabilities improved: In ADDSS 2.0, up to 5 architectures are
visualized per row showing the thumbnail images of the architectures with the
same width, so users can now browse more easily the architectures across the itera-
tions. Figure 2 shows an example of the iterations list.

• Status of the decisions: A status can be assigned to each decision (e.g.: pend-
ing, rejected, approved, obsolete), so the architect can know which is the current
status of that decision in the project.

www.manaraa.com

 Extending Software Architecting Processes with Decision-Making Activities 189

Fig. 2. Iterations list shown the architecture products with ADDSS 2.0

• Date of each decision can be added.
• Support for alternatives decisions: Decisions can be marked as alternative de-

cisions until the final decision is made (one or more decisions could be the best
ones).

• Tagged requirements as they have been used by a decision. Therefore, the archi-
tect knows at every time the amount of requirements that have been addressed
during the architecting activity (see Figure 3).

Fig. 3. A design decision with its date, status, the requirements that motivated the decision; and
a dependency link to a previous decision

www.manaraa.com

190 R. Capilla and F. Nava

• Category of the decision: A category attribute discriminate between main, al-
ternative, and derived decisions. A derived decision has a parent decision.

• PDF documentation improved: The documentation generated by ADDSS 2.0
details the relationships between requirements, decisions and architectures to
follow more easily the trace links. PDF documents describe explicitly the chain
of the links between different decisions, so we can easily know which decisions
depend from other decisions.

• User interface improved (e.g.: menu options, colours).
• Support for different stakeholder roles.
• Pattern classification into different categories: Pattern search is now more

easy and intuitive for the architect.
• Support for different architectural views: Now we provide support to define

different architectural views and make decisions for each single view.
• Knowledge search: In addition to browsing patterns and navigating across the

decisions made, a query module extracts relevant information about the decisions
made following the links between requirements, decisions, and architectures. For
instance, we can extract the requirements and the architectures affected by a par-
ticular decision, or we could even know the decisions that affect a particular ar-
chitecture product.

4.2 Decision-Making Process with ADDSS 2.0

According to the activities described in tables 1 to 4, this section describes which of
these are implemented in ADDSS 2.0. Table 5 shows in yellow the activities currently
supported by ADDSS 2.0. Those activities marked with “+” can be supported by
ADDSS and they have been added with respect to the initial classification of section 3
as a refinement of similar tasks. Also, those processes marked inside a dotted box are
not directly supported by ADDSS 2.0 (we don’t have an explicit attribute to record
such information or process implemented to provide some degree of automatic sup-
port), but the result of these activities can be stored as part of the description of the
decision as a free text description. The remainder activities are not supported by the
tool. The tool provides a semi-automatic support to manage the tacit knowledge and
make it explicit to users. The explanation of the activities of table 5 supported by
ADDSS 2.0 is as follows. During the architecting process, ADDSS 2.0 records the
decisions and assigns to them a status as well as other items like the date and the
responsible of the decision. The architect can tag a decision as alternative, derived, or
main (the selected decision). This reasoning process implies to consider the pros and
the cons of any decision, as well as constraints and dependencies between decisions.
The reuse of existing AK is limited by this moment to design patterns previously
stored. Reusing previous decisions can be done by examining the documentation
generated by the tool. The evaluation of the alternatives is externally done but the
results are stored in ADDSS in the form as approved or rejected decisions. Users can
navigate through past decisions or even query the database to extract trace informa-
tion between decisions, requirements and architectural products.

www.manaraa.com

 Extending Software Architecting Processes with Decision-Making Activities 191

Table 5. Decision-making activities which are automatic or manually supported by ADDSS 2.0
to record and document relevant architectural knowledge

Decision-making activities supported by ADDSS 2.0
Activity Sub-activities level 1 Sub-activities level 2

ARCHITECTING (*): Creates and stores AK
Make decision

Reasoning
(rationale, motivation)
Select the best alternative

Constraint and dependency
analysis

Characterize decision Assign status and other
relevant items

Store and document deci-
sions

Evaluate AK Reuse AK

Search, Discovery
Navigate through DD (+)
Query DD (+)
Assessment / Learn

SHARING (*): Make AK available to others
Review AK Analyze documents or exist-

ing AK stored
Search, Discovery
Navigate through DD (+)
Query DD (+)

Communicate AK Subscribe to AK
Organize meetings

Pull/ Push (RSS)
Discuss / explain

ASSESSING (*): Recommends the selection of a decision
Evaluate

Evaluate impact of implica-
tions
Constraint analysis
Evaluate impact of quality
attributes

Analysis of alternatives

Review Check for completeness and
correctness of AK

Validate

Check decisions against
requirements and architec-
tural products
Check the integrity of the
dependencies between deci-
sions

Traceability

Recommend Communicate to stakeholders
the results of the assessment
activity

LEARNING (*): Understand why decisions were made
Evaluate stored AK Compare the decisions to

products and requirements
Detect wrong decisions or
inconsistent AK

Follow trace links
Search-Reuse AK
Navigate through DD (+)
Query DD (+)

Training Teaching about past deci-
sions and experiences

Search-Reuse AK
Assessment / Learn

Make assumptions
Evaluate AK
Analyze implications
Validate before storing

Simulation
Impact analysis

Evaluate alternatives

www.manaraa.com

192 R. Capilla and F. Nava

Sharing activities could be partially supported in ADDSS 2.0 by the analysis of ex-
isting PDF documentation or stored patterns as well as codified architectures and
decisions.

Assessment activities can be supported using the traceability mechanism to check
requirements against decisions and validate the decisions made. Also, the results of an
evaluation of the alternatives can be stored using the status attribute, but no support is
provided to carry out the evaluation process in itself. The basic dependency model
supported by ADDSS serves to establish links between requirements and architectures
which becomes useful for maintenance and evolution activities.

Finally, learning activities can be only carried out through out the evaluation of the
decisions that have been recorded. We can compare the decisions made against the
requirements to know how many of these have been addressed, and also trace such
requirements to the architectural products developed in the process. The documenta-
tion generated by the tool shows the chain of the links between decisions as a way to
track manually root causes or even known the implications in the architecture when
requirements changes.

Otherwise, inconsistencies or wrong decisions may cause to remove a decision or
to mark this as wrong. One key aspect not currently supported happens when we
remove a decision. ADDSS does not warn about the consequences of removing a
decision, which may cause a broken link in the dependency network. Detecting wrong
and inconsistent knowledge is still a challenge to face.

4.3 Impact on Traditional Architecting Activities

Software architecting is considered a formal software engineering approach aimed to
create and maintain the architecture of a software system over time. Complex and less
complex approaches in combination with other software engineering practices are
often used to achieve a balance between the more formal activity of well established
methods and the agility required to meet the project schedule. In close relationship to
this, the introduction of a complementary and concurrent activity like the creation and
use of architectural design decisions with specific tool support changes the traditional
way in which software architects do their job. By making explicit the process that
records the tacit knowledge residing in the architect’s mind, we clearly overload the
effort spent by architects in the traditional modeling activity. Recording the design
decisions introduces an extra effort in architecting, but a significant reduction should
be expected during the system maintenance and evolution, as software architects will
be able to replay past decisions as well as to avoid other maintenance tasks like archi-
tecture recovery or reverse engineering processes. With ADDSS 2.0 we have tried to
balance the processes aimed to store and use architectural knowledge with respect to
the more traditional architecting activity. Because ADDSS 2.0 is not integrated with
other modeling tools like Rationale Rose, decisions can be stored in parallel at the
same time the designers use these modeling tools to depict the architecture. In figure 4
we represent the influence of design decisions in the potential overhead and reduction
effort in architecture development and maintenance phases.

Initially, architects spend a certain effort in creating the architecture during several
project iterations (It), and some additional effort has to be made to create the design
decisions (DD) including evaluation, assessment, pattern usage, etc. During any

www.manaraa.com

 Extending Software Architecting Processes with Decision-Making Activities 193

maintenance activity, new decisions have to be made while others can be reused
(hexagons in figure 4). For instance, the architecture of iteration It6 is the result of a
reused decision and a new one. Hence, the effort spent in re-architecting the system is
expected to be lower than if decisions were never recorded. Computing this effort is
quite important to estimate how much effort can be saved.

Fig. 4. Effort overview extending the traditional architecting activity with explicit decision-
making processes for recording and using architectural design decisions

5 Conclusions and Future Work

As mentioned in [20], “creating and maintaining this rationale is very time-consuming”.
At present, we have no empirical data concerning the overhead associated with re-
cording and using architectural design decisions. Because ADDSS 2.0 has just been
released, we only have the results from a previous evaluation done with ADDSS 1.0,
in which 22 master students participated in the evaluation of a small-medium size
project. The students were organized in teams of two persons and they spent around
20 hours to record the decisions of a small virtual reality system which has been mod-
eled using Rational Rose and MagicDraw. Because ADDSS 1.0 has limited features
(e.g. no support for decision status or alternative decisions) compared to version 2.0,
the main results from the evaluation forms and interviews with the team members can
be summarized as follows. Most of the teams perceived ADDSS as easy to learn and
use, and they have praised ADDSS for understandability. Also, depending on experi-
ence of the teams, 4 teams spent around 20 hours while 3 teams spent between 7 and
10 hours, and 4 teams took less than 7 hours using the tool. The average time spent by
the teams on recording the design decisions was about 10 hours (it does not comprise
the traditional modeling activities). Finally, the average scores of the evaluation of
ADDSS by the teams ranged between 5 and 10 points in a scale from 0 to 10, except
the learning effort that was around 4 points. With respect to the traditional approach,
the teams perceived they needed some extra effort to record and maintain the

www.manaraa.com

194 R. Capilla and F. Nava

decisions stored in ADDSS 1.0, but we didn’t perform cross-comparison creating the
same architecture without using ADDSS.

At present, we have performed just one experiment to estimate the overhead asso-
ciated with recording design decisions. For the next months we expect to have some
additional measurable data using ADDSS 2.0 to evaluate the improvements made and
estimate the savings when reusing architectural design decisions. Also, we wan to
analyze the barriers and the effort needed as we change the traditional way of archi-
tecting when recording decisions in parallel with modeling tasks. Because ADDSS
tries to bridge the gap between products and requirements, the maintenance phase can
benefit from our approach. Moreover, integration with other popular software engi-
neering tools could reduce the effort in capturing decisions.

Finally, the documentation generated extends the traditional architectural docu-
mentation and provides valuable information for different stakeholders who want to
learn how the architecture was created. Such information crosscuts the information
from other architectural views, such as mentioned in the “decision view” [7], which
should be seen as a complementary view to the other traditional ones. ADDSS uses
plain text in database fields and PDF documents to store and present the design deci-
sions. However, it is planned to export this information to XML documents in order
to facilitate the information exchange with other platforms and tools.

References

1. Babar, M.A., Gorton, I.: A Tool for Managing Software Architecture Knowledge. In: Pro-
ceedings of the 2nd Workshop on Sharing and Reusing Architectural Knowledge, ICSE
Workshops (2007)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley, Reading (2003)

3. Bosch, J.: Software Architecture: The Next Step. In: Oquendo, F., Warboys, B.C., Morrison,
R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 194–199. Springer, Heidelberg (2004)

4. Capilla, R., Nava, F., Pérez, S., Dueñas, J.C.: A Web-based Tool for Managing Architectural
Design Decisions. In: Proceedings of the 1st Workshop on Sharing and Reusing Architectural
Knowledge. 31 (5). ACM Digital Library, Software Engineering Notes (2006)

5. Capilla, R., Nava, F., Dueñas, J.C.: Modeling and Documenting the Evolution of Architec-
tural Design Decisions. In: Proceedings of the 2nd Workshop on Sharing and Reusing Archi-
tectural Knowledge, ICSE Workshops (2007)

6. Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.:
Documenting Software Architectures. Views and Beyond. Addison-Wesley, Reading (2003)

7. Dueñas, J.C., Capilla, R.: The Decision View of Software Architecture. In: EWSA 2005.
LNCS, vol. 3047, pp. 222–230. Springer, Heidelberg (2005)

8. Dutoit, A., McCall, R., Mistrik, I., Paech, B. (eds.): Rationale Management in Software En-
gineering. Springer, Heidelberg (2006)

9. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design Decisions. In:
5th IEEE/IFIP Working Conference on Software Architecture, pp. 109–118 (2005)

10. Jansen, A., Bosch, J.: Evaluation of Tool Support for Architectural Evolution. In: 19th Inter-
national Conference on Automated Software Engineering (ASE 2004), pp. 375–378 (2004)

11. Jansen, A., van der Ven, J., Avgeriou, P., Hammer, D.K.: Tool Support for Architectural De-
cisions. In: 6th Working IEEE / IFIP Conference on Software Architecture (WICSA 2007),
p. 4 (2007)

www.manaraa.com

 Extending Software Architecting Processes with Decision-Making Activities 195

12. Kruchten, P.: Architectural Blueprints. The “4+1” View Model of Software Architecture.
IEEE Software 12(6), 42–50 (1995)

13. Kruchten, P., Lago, P., van Vliet, H.: T. Building up and Reasoning About Architectural
Knowledge. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS, vol. 4214,
pp. 43–58. Springer, Heidelberg (2006)

14. Lago, P., Avgeriou, P.: ACM SIGSOFT Software Engineering Notes. In: First Workshop on
Sharing and Reusing Architectural Knowledge, vol. 3(5), pp. 32–36.

15. Perry, D.E., Wolf, A.L.: Foundations for the Study of Software Architecture, October 1992.
Software Engineering Notes, pp. 40–52. ACM SIGSOFT (1992)

16. Roeller, R., Lago, P., van Vliet, H.: Recovering Architectural Assumptions. The Journal of
Systems and Software 79, 552–573 (2006)

17. Rozanski, N., Woods., E.: Software Systems Architecture: Working with Stakeholders Using
viewpoints and Perspectives. Addison-Wesley, Reading (2005)

18. Tang, A., Babar, M.A., Gorton, I., Han, J.A.: A Survey of the Use and Documentation of
Architecture Design Rationale. In: 5th IEEE/IFIP Working Conference on Software Archi-
tecture (2005)

19. Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Architecture. IEEE Soft-
ware 22(2), 19–27 (2005)

20. van der Ven, J.S., Jansen, A.G., Nijhuis, J.A.G., Bosch, J.: Design Decisions: The Bridge
between the Rationale and Architecture. In: Rationale Management in Software Engineering,
pp. 329–346. Springer, Heidelberg (2006)

21. Wang, A., Sherdil, K., Madhavji, N.H.: ACCA: An Architecture-centric Concern Analysis
Method. In: 5th IEEE/IFIP Working Conference on Software Architecture (2005)

www.manaraa.com

A Tool for Supporting Feature-Driven

Development

Marek Rychlý and Pavĺına Tichá

Department of Information Systems,
Faculty of Information Technology, Brno University of Technology,

Božetěchova 2, 612 66 Brno, Czech Republic
rychly@fit.vutbr.cz, xticha05@stud.fit.vutbr.cz

Abstract. This paper deals with the Featured Driven Development
(FDD), an agile software development method. According to the require-
ment analysis for the FDD method application, an information system
has been created providing all team members with instruments to follow
the method. This tool has been implemented as a multi-user web-based
application enabling creation of feature lists, planning a project, support-
ing cooperation among members of a feature-team, and tracking project
progress in an illustrative way. To support project management and
communication with customer representatives, a wide range of reporting
features has been provided.

Keywords: Agile software development, Feature driven development,
Feature, Feature-team, Class ownership.

1 Introduction

Traditional software development suffers from slow interaction between the de-
velopment process and evolving user requirements. It follows from application
of traditional software development methods to projects with rapidly changing
business requirements. In this context, approaches to software development can
be broadly divided into two groups. At one extreme, there are classical software
development methods where user requirements are obtained in the first phases of
the development process and each one of the later phases follows an earlier one
(e.g. “the waterfall” model). At the other extreme, there are agile software devel-
opment methods [1], which embrace and promote evolution of user requirements
throughout the entire development process (e.g. “eXtreme Programming”). The
first extreme produces precisely designed and documented software systems, but
those often do not match current user requirements, while the second extreme
produces software systems matching the latest user requirements, but often with
an inconsistent design and poor documentation.

The Feature Driven Development (FDD) [2] is an iterative and incremental
software development process. Although the FDD method is one of agile soft-
ware development methods, it is built around the traditional industry-recognised

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 196–207, 2008.
c© IFIP International Federation for Information Processing 2008

www.manaraa.com

A Tool for Supporting Feature-Driven Development 197

practices derived from software engineering, including planning, design and docu-
mentation phases with fine-grained decomposition of a system’s functionality and
developers’ responsibilities, accurate progress reporting, frequent verification,
etc. The application of the FDD method leads to better project management
and consistency of a software’s design, implementation and documentation.

The paper describes requirement analysis for a software supporting the FDD
method [3]. The tool is designed and implemented as an information system
providing all team members with instruments to follow the FDD method on
real software projects run in a middle-sized software development company. An
important feature of the tool is ability of tracking changes in user requirements
and map them into modifications in classes and into team members responsible
for implementing the changes. Using the feature contributes to an increase in
safety of development process.

The remainder of the paper is organised as follows. In Section 2, we introduce
the FDD process in more detail. In Section 3, we analyse the FDD process
and describe requirements concerning the supporting tool. In Section 4 and
Section 5, we describe the design and (briefly) implementation of the tool.
In Section 6, we review main approaches that are relevant to the subject and
discuss advantages and disadvantages of our system compared with the reviewed
approaches. Finally, in Section 7, we summarise our approach, current results
and outline the future work.

2 Feature Driven Development (FDD)

The Feature Driven Development (FDD) has been published in 1999 [4], after
its successful application at an international bank in Singapore in 1997. The
FDD is a highly iterative and collaborative agile development method that is
composed of five processes (see Figure 1). The processes are formally described
using the traditional ETVX-based (Entry-Task-Verify-eXit) process descriptions
[2]. Informally, the processes can be described as follows:

Fig. 1. The five processes of the FDD method (form [2])

www.manaraa.com

198 M. Rychlý and P. Tichá

Develop an Overall Model – In collaboration with domain experts and de-
velopers, an overall domain object model is created gradually in series of
“walkthroughs” of a software system’s scope and context for each area of
the problem domain. It captures the key abstractions and their relationships
in the system.

Build a Features List – According the initial domain object model, a list of
features is created where each feature describes an object or its method in
the domain model. A “feature” is defined as a small, deliverable client-valued
piece of a system’s functionality, which can be implemented in no more than
2 weeks. The features are grouped into feature-sets, which represent business
processes or work-flows, and the feature-sets are grouped into subject-areas
(or subject-domains), which represent business functions or business domains
implementing core capabilities of the system. There are recommended for-
mats for descriptions of the features, feature-lists and subject-areas, which
facilitate its mapping into objects and methods [4]. The recommended format
of the descriptions is
– for a feature: action the result (by, for, of, to, . . .) a(n) object [(of, for,

with, . . .) parameters], e.g. “verify the password for an user with the
login”,

– for a feature-list: action (for, of, . . .) a(n) object, e.g. “authentication of
an user”,

– and for a subject-area: object management, e.g. “user management”.
Plan By Feature – The feature-sets and features are analysed and their time

intensities are estimated. The feature-sets are sorted according to priori-
ties assigned by a customer’s representatives, estimated time intensities and
technical dependencies. Then they are assigned to individual ad-hoc feature-
teams. Inside the feature-teams, classes from the domain model are assigned
to individual developers. Each developer is responsible for creation and main-
tenance of his classes. The developer is a member of all feature-teams, which
have assigned the features related to the developer’s classes.

Design By Feature and Build By Feature – Those two processes are it-
erated for each work package, i.e. for a small group of features from one
feature-set. The work package is processed by one feature-team and it is
a unit of integration with other feature-sets and feature-teams. Members
of the feature-team collaborate to create sequence diagrams and another
useful design models for their features, and design interfaces and declarations
for corresponding classes and methods. After that, individual developers
implement and integrate their classes or parts of the classes into a system.

The FDD processes uses software engineering “best practices” such as domain
object modelling (the model is a primary representation of knowledge), devel-
oping by feature (iterative and incremental), individual class ownership, ad-hoc
set up teams of developers, inspection and reviews (of an overall model, feature-
lists, design models and a code), regular builds and verification by a customer’s
representatives, progress reporting, etc.

www.manaraa.com

A Tool for Supporting Feature-Driven Development 199

2.1 Roles and Responsibilities in the FDD Processes

The FDD method defines more roles than many of other agile methods [1].
The roles can be classified into three categories: key roles, supporting roles and
additional roles [2]. One team member can act as multiple roles, and a single
role can be shared by several team members.

The six key roles in a FDD project are: project manager (the leader of
a project), chief architect (overall design of a system), development manager
(the coordinator of teams), chief programmer (the leader of a feature-team
preparing work packages), class owner (designer, coder, tester and documentarist
of its classes) and domain experts (detailed knowledge of user requirements and
problem domains).

The five supporting roles comprise release manager (controls progress of the
process), language lawyer/language guru (has detail knowledge of programming
language or technologies), build engineer (responsible for build process and
version management), tool-smith and system administrator (technical support
of a project).

The three further roles that are needed in some projects are: testers (verify
that a system fulfils requirements), deployers (maintain data compatibility and
prepare new releases) and technical writers (prepare user documentation).

3 Software Support for the FDD Method

To support of the FDD method, we need to track the five processes, which
are described in Section 2, from points of view of the roles that are listed in
Section 2.1. A software support for the FDD method should control application
of the FDD processes to real software projects.

The first FDD process is focused on the developing of an overall domain
model. According to the original presentation of the FDD method [4], it is
recommended to use UML visual models [5] with coloured objects. The initial
domain model provides a basis for feature-lists, that will be created in the second
FDD process. However, in the most projects, many features are arising during
the later processes, especially in the processes “design by feature” and “build
by feature” as modifications and extensions of the existing features. This issue
forbids description of the domain model in details during the first process and
requires modifications of the model in later processes. The software support of
the FDD method should allow modification of domain models in relation to
feature management.

To support the second FDD process, which is aimed at building of feature-
lists, a software support for the FDD method needs to keep track of all features
in a project and their grouping to feature-sets and subject-areas. Generally,
lists of features can be created in two ways: top-down and bottom-up, i.e. as
decomposition of subject-areas to feature-sets and then to single features and
as composition of features into feature-sets and feature-sets into subject-areas,
respectively. The software has to support both ways.

www.manaraa.com

200 M. Rychlý and P. Tichá

In the third FDD process, a timetable for feature-sets and features is created.
For each feature, it includes the time of its start and its estimated duration. There
are two requirements contrary to each other: keep the start-time and duration
of a whole project and permit individual planing of features in scope of feature-
teams. To balance those requirements, we split the whole project into two-weeks
intervals, which are appropriate to maximal time intensities of features [2]. Then,
the feature-teams can plan their features within the assigned two-weeks intervals
independently and the time-requirements of the whole project are complied. The
supporting system should allow to assign features to intervals and their detailed
planing, including control of their dependencies and balancing of a workload.

The last two FDD processes are focused on designing and building of individ-
ual features in compliance with the principle of feature-ownership. Owner of a
feature creates a list of activities leading to implementation of the feature. Each
activity can require modification of a class or its part related to the feature.
The modification will be done solely by the owner of the class (a developer).
This implies also ownership of a part of a project’s source code. The software
support of the FDD method should track those relationships between features,
developers and parts of classes.

Finally, a tool for supporting the FDD method has to provide a set of visual
reports. The reports should continuously show progress for individual features,
feature-sets, subject-areas and a whole project, as well as a proper form of work-
load overviews for individual developers and feature-teams. This information is
important for correct planing decisions.

To summarise, the basic requirements to software support of the FDD method
according to its five processes are the following: a support of an initial domain
model, tracking of its modification and connections of its parts to individual fea-
tures; a support of features, feature-sets and subject-areas, and their composition
and decomposition (top-down and bottom-up approaches); a support of individ-
ual planing of features in scope of feature-teams without substantial impact on
duration of a whole project; a support of the principle of feature-ownership and
class-ownership and collaboration of the owners of features and classes; and a
support of wide range of visual reports required for planing decisions.

4 Design of the Tool for Supporting FDD

The Figure 2 shows the basic user roles, which cover important roles from
Section 2.1 according to the requirements for a tool for supporting the FDD
method (an information system) mentioned in Section 3. Besides those require-
ments, we define “a domain” as an independent group of projects supported by
the tool, e.g. projects of one software developer company using the tool, if it is
provided as an outsourced service.

The SystemAdministrator maintains technical issues of the whole information
system (the same meaning as in Section 2.1), e.g. controls user rights and domains,
while the DomainAdministrator maintains technical issues of a domain specific
part of the system, e.g. controls users in the domain.The ProjectAdministrator is

www.manaraa.com

A Tool for Supporting Feature-Driven Development 201

Fig. 2. The hierarchy of the well-established user roles

Fig. 3. The class diagram of features and feature-lists

able to create, modify and delete a project, assign and withdraw users and their
roles in the project, and obtain reports relevant to the project and its parts. The
ChiefArchitect can manage a project’s domain model and features, feature-sets
and subject-areas, and make planing decisions, i.e. assign individual features
into two-weeks intervals (see the requirements of the third FDD process in
Section 3). The FeatureOwner maintains a feature-team, i.e. controls activities
leading to implementation of the feature, assigns classes that are modified by
the activities and class-owners responsible for realisation of individual activities,
watches progress of the activities and verifies finished activities. The ClassOwner
represents a developer, who implements a part of assigned feature (an individual
activity connected to the owned class) and is able to modify information about
the progress of the activity. The last role, the Guest, represent external supervisor
of a project, a customer’s representative, who is able to view reports about
progress of the project.

In the Figure 3, there is a part of class diagram related to features and
feature-lists. The instance of the class FeatureManager handles for a project a
collection of features (classes FeatureCollection and Feature) composed into
feature-sets (classes FeatureSetCollection and FeatureSet) composed into
subject-areas (classes SubjectAreaCollection and SubjectArea). Those features,
feature-sets and subject-areas have attributes representing scheduled numbers of
starting and ending two-weeks intervals. Moreover, the features have attributes
indicating actual starting and ending two-weeks intervals and their current

www.manaraa.com

202 M. Rychlý and P. Tichá

Fig. 4. The class diagram of features and activities

states1. Features, feature-sets and subject-areas are connected to users (instances
of class User with stereotype Actor), that act as their owners.

The class diagram in the Figure 4 shows relationship of features and activities
and their context. The instance of the class ActivityManager handles for a project
a collection of activities (classes ActivityCollection and Activity). Each activity
contains attributes that represent its scheduled and actual numbers of starting
and ending two-weeks intervals, the name of a class, which is modified by the
activity, the progress in percents and current state1. Activities are connected
to features (instances of class Feature) and users (instances of class User with
stereotype Actor), that act as owners of the modified classes during the activities
and are responsible for realisation of the activities.

The overall entity-relationship diagram of the system with basic entities is pre-
sented in the Figure 5. The diagram connects entities for features and activities
to auxiliary entities for domain management (entities Domain and Project) and
user management (entities User, Right, Role and associative entity UserRoleIn-

Project). The entities for features and activities (entities Feature, FeatureSet,
SubjectArea and Activity) have been described before, as the relevant classes in
the class diagrams in Figure 3 and Figure 4.

5 Implementation and Practical Results

The system has been implemented in the framework ASP.NET 2.0 and coded
in the C# language as a web-based application for the Microsoft Internet In-
formation Services web-server and the relational database management system
Microsoft SQL Server as a data storage back-end. The external database is
accessed via ADO.NET and own data abstraction layer, which maps relational
data to proper objects and vice versa (see Manager- classes in Figures 3 and 4).

The data abstraction layer providing objects based on the relational data
also generates some dynamic attributes of those objects. A good example is
the realState attribute of classes Activity, Feature, FeatureSet, SubjectArea

1 The states are: “not started”, “in progress”, “attention” and “completed”.

www.manaraa.com

A Tool for Supporting Feature-Driven Development 203

Fig. 5. The entity-relationship diagram with basic entities (the UML notation)

and Project. The attribute represents the actual state of an activity, one or
more features or a whole project, and can assume values “not started”, “in
progress”, “attention” and “completed”, i.e. the same values as state attributes.
For instances of classes Activity and Feature, the attribute is computed form
attributes state, -Start/-End attributes and the actual two-week interval. The
attribute realState has value “attention” if the number of the actual two-week
interval is greater than planStart and state is not “in progress” or “completed”,
or it is greater than planEnd and state is not “completed”, otherwise the attribute
realState reflects attribute state.

Attributes realState of instances of classes FeatureSet, SubjectArea and
Project are derived in the hierarchy of those objects in the bottom-up direc-
tion. For object A (e.g. FeatureSet), which composes from objects B1, . . . , Bn

(e.g. Feature-s), attribute realState of A has value “attention” or “in progress”
if at least one of attributes realState of B1, . . . , Bn has value “attention” or
“in progress”2, respectively, otherwise the attribute of A reflects values of the
attributes of B1, . . . , Bn.

The result of such “automatic state analysis” of a project’s parts can be
reported by the system as the project park diagram3 (see Figure 6). Moreover,
values of the realState attributes of objects in time can be aggregated through
a whole project into the project development roadmap. The roadmap indicates a
development plan and real states of completed features in percentages on Y-axis
and in time on X-axis of the graph (see Figure 7).

2 If B1, . . . , Bn are “completed” but at least one “not started”, A is also “in progress”.
3 The values of progress bars in the boxes of the project park diagram represent-

ing Feature-s are computed as arithmetical averages of percentDone attributes of
Activity-ies, which are grouped in the boxes at this level.

www.manaraa.com

204 M. Rychlý and P. Tichá

Fig. 6. The project park diagram example where colours of the boxes represent
realState attributes of a project’s parts (a part of real report from the presented tool)

Fig. 7. The project development roadmap (a part of real report from the tool)

The system can export also other reports (e.g. summary progress and trend
reports). All reports are available in HTML, PDF and RTF formats, suitable for
project managers as well as a customer’s representatives.

The source code of the described tool for supporting the FDD method is li-
censed under the GNU General Public License (GNU GPL) and will be available
as an open source project4.

6 Discussion and Related Work

In this section, we briefly review four projects that support the FDD method
of software development and compare them with our approach. Table 1 compares
4 See http://www.fit.vutbr.cz/homes/rychly/fdd-tech/

www.manaraa.com

A Tool for Supporting Feature-Driven Development 205

Table 1. The comparison of the tools that support the FDD method of software
development (notes: ∗the names marked by a star are open source projects)

Name Type Users Feature
(de)composition

Progress reporting

FDD Tools
Project∗

desktop single
user,

projects

features, feature-sets,
subject-areas (top-down)

project park diagram
(interactive)

FDD
Tracker

desktops
(shared

DB)

roles,
projects,
domains

work-packages, features,
feature-sets, subject-areas

(top-down)

project park diagram, plan
view report, progress

summary report, project
dev. roadmap (overall and

weekly), defect graph

Cognizant
FDD

Visual
Studio

TF
Server
RTM

roles,
projects

modifications of
components, features,

feature-sets, subject-areas
(top-down and

bottom-up)

progress report, defect
report, prioritised feature
list, component ownership

matrix

FDDPMA∗ web-
based

roles,
projects

work-packages, features,
feature-sets, subject-areas

(top-down)

project park diagram,
progress summary report,

project development
roadmap, plan view report,
feature completion trend

Our tool∗ web-
based

roles,
projects,
domains

work-packages, activities
(modifications of classes),

features, feature-sets,
subject-areas (top-down

and bottom-up)

project park diagram,
progress summary report,

project development
roadmap, trend report

the basic features of the reviewed projects5, which are described in more
detail bellow.

The FDD Tools Project [6] is an open-source Java-based desktop application
providing only basic support for the FDD method. It provides one progress report
for features (a project park diagram) and there are no means of decomposition
of the features into partial tasks. The project seems not to be actively developed
anymore.

The FDD Tracker [7] is a commercial desktop application executable on
Microsoft Windows NT-based operating systems. It provides complex multi-user
multi-domain support of the FDD method including support of different roles
and views, support of intervals of variable length, inspection management, defect
tracking and reporting, etc. The FDD Tracker does not support web-based user
interface, does not allow bottom-up composition of features into feature-lists and
does not connect parts of features to parts of a source code.

5 The names of progress reports are not standardised and each project uses its own
terminology. In the table, we rename some of the progress reports according their
formats and provided information in order to allow direct comparison of the projects.

www.manaraa.com

206 M. Rychlý and P. Tichá

The Cognizant Feature-Driven Development [8] is a commercial tool for sup-
porting the FDD method, which is integrated in Microsoft Visual Studio Team
Foundation Server RTM. It allows defining of a software project in Visual Studio
as a collection of individual features with connection to the project’s source
code and tracking of its defects. Cognizant FDD extends five processes of the
FDD method with a new process “certify by feature”, which follows the fifth
FDD process “build by feature” in each iteration, and a new iterative process
“release” closing the whole development process [9]. Drawback of Cognizant FDD
can be its tight integration with Visual Studio, which prevents managers (non-
developers) and a customer’s representatives from interaction with products of
the FDD method.

The FDD Project Management Application (FDDPMA) [10,11] is open-source
Java-based application and the only web-based tool among reviewed projects.
Unfortunately, the FDDPMA does not allow bottom-up composition of features
into feature-lists and does not support relationships between features and classes
or their parts (i.e. no class ownership).

In comparison of our tool with the reviewed projects, we can find many
similar features that are recommended by the FDD method description (see
Section 2). In addition to that, our tool supports top-down and bottom-up
approaches to creation of feature-lists, provides decomposition of features into
activities, which represent tasks needed to accomplish a feature, connection of
the activities and relevant classes or their parts that must be implemented by
developers to complete an activity, and detailed hierarchical tracking of the
state and progress of features from developers (i.e. activities) to managers (i.e.
feature-sets and a project). Usage of the web-based user interface allows easy
remote access to project data, especially for domain experts and a customer’s
representatives that should participate in a project. Drawback of our system
can be isolation from other development tools and absence of advanced FDD
tools such as tracking of features verification process and defects or support for
feature-teams collaboration.

7 Conclusion and Future Work

The paper describes requirements analysis, design, and implementation of a tool
supporting the FDD method. The described system covers the five FDD processes,
features and feature-lists management, support for decomposition of the features
to activities connected to individual classes or their parts, support for feature-
owners and class-owners, control of progress at different levels of hierarchy, user
management with well-established and user-defined roles, and support of various
reports (the park diagram, the project development roadmap, summary progress
and trend reports). Some of those features (e.g. support for activities) are novel
and have not been used yet.

Incremental development of a software system with strictly defined features
and related modifications of parts of classes (i.e. mapping of user requirements
into modifications of a source code) allows better tracking of impact of individual

www.manaraa.com

A Tool for Supporting Feature-Driven Development 207

increments on quality of a whole software system and contributes to an increase
in safety of development process.

Future work is mainly related to integration of human-resource management
into the tool (e.g. appointment of feature-team members according to their past
experiences and current workload) and support for source code management
(i.e. more detailed tracking of source code modifications caused by a feature
realisation).

Acknowledgement. This research has been supported by the Research Plan
No. MSM 0021630528 “Security-Oriented Research in Information Technology”.

References

1. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development
methods: Review and analysis. VTT Publications 478, Espoo, Finland: Technical
Research Centre of Finland (2002)

2. Palmer, S.R., Felsing, M.: A Practical Guide to Feature-Driven Development.
Prentice Hall PTR, Upper Saddle River (2002)

3. Tichá, P.: Information system supporting Feature Driven Development. Master’s
thesis, Brno University of Technology, Faculty of Information Technology, Depart-
ment of Information Systems (May 2007)

4. Coad, P., Lefebvre, E., Luca, J.D.: Feature-Driven Development. In: Java Modeling
in Color with UML: Enterprise Components and Process, ch. 6, Prentice Hall PTR,
Upper Saddle River (1999)

5. OMG: UML superstructure specification, version 2.0. Document formal/05-07-
04, The Object Management Group (August 2005) Also available as ISO/IEC
19501:2005 standard

6. SourceForge.net: FDD tools project (September 2006), http://fddtools.sf.net/
7. IT Project Services: FDDTracker (2007), http://www.fddtracker.com/
8. Cognizant Technology Solutions: Cognizant Feature-Driven Development (2007),

http://www.cognizant.com/html/content/microsoft/techfddvsts.asp

9. Cognizant Technology Solutions: Implementing Cognizant Feature-Driven Devel-
opment using Microsoft Visual Studio Team System. Technology white-paper,
Cognizant.NET Center of Excellence (2005)

10. FDDPMA Development: FDD project management application (2007),
http://www.fddpma.net/

11. Khramthchenko, S.: A project management application for Feature Driven Devel-
opment (FDDPMA). Master’s thesis, Harvard University (June 2005)

http://fddtools.sf.net/
http://www.fddtracker.com/
http://www.cognizant.com/html/content/microsoft/techfddvsts.asp
http://www.fddpma.net/

www.manaraa.com

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 208–222, 2008.
© IFIP International Federation for Information Processing 2008

In-Time Role-Specific Notification
as Formal Means to Balance Agile Practices

in Global Software Development Settings

Dindin Wahyudin1, Matthias Heindl2, Benedikt Eckhard1, Alexander Schatten1,
and Stefan Biffl1

1 Institute of Software Technology
and Interactive Systems,

Vienna University of Technology,
Vienna, Austria

{Dindin,Eckhard,Schatten,Biffl}@ifs.tuwien.ac.at
2 Support Center Configuration Management Siemens Program and Systems Engineering,

Vienna, Austria
{matthias.a.heindl}@siemens.com

Abstract. In global software development (GSD) projects, distributed teams
collaborate to deliver high-quality software. Project managers need to control
these development projects, which increasingly adopt agile practices. However,
in a distributed project a major challenge is to keep all team members aware of
recent changes of requirements and project status without providing too little or
too much information for each role. In this paper we introduce a framework to
define notification for development team members that allows a) measurement
of notification effectiveness, efficiency, and cost; b) formalizing key communi-
cation in an agile environment; and c) providing a method and a tool to imple-
ment communication support. We illustrate, with an example scenario from an
industry background, the concept and report results from an initial empirical
evaluation. From the evaluation it follows that the concept allows determining
and increasing the effectiveness and efficiency of key communication in a
global software development project in a sufficiently formal way without com-
promising the use of agile practices.

Keywords: Software project management, Software process improvement,
Methods and tools of software development, Agile practices in global software
development, Context-specific notification.

1 Introduction

Today business competition forces highly distributed and global software development
(GSD) players to be more responsive and adaptable to uncertainty during development
processes (e.g., changes of requirements, technologies implementation;involvement of
partners/subcontractors), especially in novel product development [14].

www.manaraa.com

 In-Time Role-Specific Notification 209

The Agile Manifesto1, promised that higher customer satisfaction can be achieved
by addressing such uncertainty aspects and delivering working software frequently
with shorter timescale. However adoption of agile practices such as daily planning,
daily synchronization and daily build [7], [16], requires overall more intensive com-
munication and information exchange among project team members regarding project
changes when compared with typical plan driven approach. Especially, in the context
of GSD projects, effective communication is an important issue as one has to take into
account distant locations and different time zones [9].

Usually, in order to communicate a change in requirements and in other project ar-
tifacts, a GSD team member who committed the change notifies other team members
in some informal way (e.g., by phone). Such an approach requires extra effort and/or
results in loss of information or delay. Another common practice is subscribing by
team member to particular tools (e.g., a project manager may subscribe to SVN/CVS
to be notified about each check-in performed by his/her developers). Although this
approach is a cheaper way of notification, it is often that the target user receives too
much information and most of them are out of his current work context or interest.

Hence, to effectively manage such an agile and distributed project one has to ad-
dress issues specific to agility and distribution, i.e. (a) all team members should be
aware of relevant project status (b) information supply should meet the current work
context of each role, (now it is hard to measure information supply due to informal
way of communication between team members in GSD), and (c) cost and effort of key
communications should be reduced. To address these issues, we propose a concept of
“in-time role-specific notification”. In-time and role-specific means delivering the right
information to the right person within his/her current work context (context aware). We
define notification in a way that allows measurement of its effectiveness, completeness
and correctness. We suggest that such an approach can also be used in the agile context.
To address the need for effort and cost reduction we extend the functionality of GSD
tools by introducing plug-in integration of the tools to support in-time role-specific noti-
fication in GSD settings. Moreover, we present scenarios, based on industrial experience,
which illustrate the need for in-time role-specific notification.

The remaining part of the paper is organized as follows: Section 2 describes
related work on agile methods adoption in GSD settings and issues important when
controlling agile GSD projects. Section 3 introduces the research questions and the
concept of “in-time role-specific notification”. Section 4 presents scenarios from
industry background and later, in Section 5, we provide initial evaluation of the con-
cept. Section 6 discusses the initial evaluation results and compares them with related
work. Section 7 concludes and outlines future research on in-time role-specific notifi-
cation that would be needed to better support collaboration in distributed projects.

2 Related Work

Global software development (GSD) projects can benefit from agile practices to react to
changing requirements and project circumstances, however to maintain the overview and
control of this project extra care has to be taken to maintain the timely communication

1 http://agilemanifesto.org/principles.html (accessed on 15 August 2007).

www.manaraa.com

210 D. Wahyudin et al.

between distributed teams and team members. Formalization of key communication and
supported by proper infrastructure can take away the burden of communication “work”
from team members while maintaining communication effectiveness and efficiency. The
key question is what kind of communication can be automated and how tools can support
such automation

2.1 Agile Methods Adoption in GSD Settings

Boehm and Turner [2] describes balancing agility with discipline such as introducing
agile practices in plan-driven GSD projects may provide complementary values de-
rived from both approaches. As the usage of plan-driven GSD methodologies promise
access to larger competence developer pool with lower development costs, and work
effectiveness due to time zone exploitation [9]. While agile software development
offers several benefits for GSD such as adaptation to changing requirements, higher
customer satisfaction, rapid releases, and lower defect rates [1]. However, Boehm and
Turner also suggest that,

The key success is finding the right balance between agility and discipline within the
development process, which will vary from different project to project according to
circumstances and risk involved.

Several literatures in Distributed and Global Software Development report experi-
ences of agile methods practices in distributed project settings. Schawber [16] reports
a case study in scaling Scrum for large project in an outsourcing company. He created
multiple small to medium size Scrum teams to perform shorter Sprint cycle and
shorter daily Scrum meeting in order to reduce deliverable time of software product.
Other study by Martin Fowler [7] reports extreme programming (XP) adoption in
large distributed project in USA. The projects successfully used practices such as
continuous integration to reduce problems with integrating the work across multi-site
teams, short iteration, and multiple communications. To keep communication be-
tween teams effective yet relatively intensive as required by XP, he employs a “team
ambassadors” as communication buffer or team representative to interface with other
distributed teams. Nisar et al. [13] and Xiaohu [18] report their experiences in adopt-
ing extreme programming (XP) in offshore teams collaborating with onshore con-
sumers. The development work is done in offshore teams with tightly involvement of
the onshore customer. Xiaohu further explained the main issue for implementing XP
practices was to reduce the communication delay and improve communication quality
between the customers and the offshore development team.

All these experience reports conclude that applied agile methods (such as XP and
Scrum) can benefit distributed development; however, research is needed to address
issues on communication between project team members which is limited andexpensive
in GSD settings [14].

2.2 The Needs for Formalization in GSD and Agile Contexts

To deliver high quality software, in GSD projects typically multiple distributed teams
work on the software development. During collaboration, the team members spend
more than 50% development time for communication [15], and about 70% of this

www.manaraa.com

 In-Time Role-Specific Notification 211

time accounted for cooperative activities [17]. Other studies in distributed software
development suggests that direct /face to face communication is very important in
uncertain software development such as to fill in activity details, fix mistakes and
inaccurate prediction, counter measures for the effect of project changes [9], to ad-
dress coordination and interdependency issues [5]. Therefore, direct communication
limitation and breakdown regarding the recent changes in requirement and project
status make critical situation in software development processes. From GSD project
management point of view it is very important to provide information that should
meet the roles expectation in order to keep the team member aware to current
requirement changes and status of development artifacts, and help to support the
multi-sites collaboration activities. However as direct communication and frequent
formal reporting of performance status in GSD is luxury and somehow very limited,
hence depict the need for an approach that can significantly reduce the effort and cost
of communication.

One approach is tool supported notification exchanges between teams and team mem-
bers by a network of notification server as proposed by deSouza et al. [5] which benefit
collaborative development such as in GSD by managing interdependencies of task and
artifacts [4]. They suggested that the event data flowing in the project system network
and work tools encapsulate critical information necessary to improve coordination of
activities, and communication. An event and its attributes (such as requirement changes,
automatic build) can represent stakeholder interactions or communication during a soft-
ware project execution. However although notification server propose automation of
some key communication in GSD, however deSouza et al. did not mention how to
formalize such notification (e.g. notification specification, rules, and model) which is
necessary to bring discipline to the automated notification generation processes. We need
to formalize in order to reduce cost, effort, and risk such as delay which is necessary in
GSD context. On the other hand we should not formalize everything because it reduces
the flexibility which is necessary for certain aspects in the project, too costly and not
practical. Therefore, it is necessary to balance formalization and flexibility using cost-
benefit analysis.

3 The Concept of In-Time Role-Specific Notification to Balance
Agile Practices in GSD Settings

This section motivates the research issues and the proposed concept of in-time role-
specific notification to address our research question. We also envision the GSD tool
support for collaboration of GSD team members, by introducing the integration of
plug-in which allows the information exchanges as part of team member work tools.

3.1 Current Reality of Agile-Global Software Development

To examine the cause and effect logic behind current agile adoption in GSD settings,
we employed Current Reality Tree suggested (CRT) in Goldratt’s theory of con-
straints [3] as problem analysis tool. CRT begins with identifying the undesirable
effects we see in today practices in GSD and trace back to a few root causes, or a

www.manaraa.com

212 D. Wahyudin et al.

Fig. 1. Current Reality Tree of Agile-GSD Project, undesirables’ effects such as delay and
motivation degradation of developer can be derived from (a) higher effort and higher cost to
retrieve information of project status and (b) the poor quality of conveyed information.

single core problem. Later we can select what to improve that will have the greatest
positive effect to agile-GSD development. Figure 1 illustrates the current reality of
typical Agile-GSD project, the lower level represent the root cause, while the upper
level signify undesirable effects.

The rectangles represent entities such as core problem, root cause, effect and unde-
sirable effect, while an ellipse represents AND operator and arrow signify the impact
direction.

We grouped the entities into 4 groups to avoid confusion of reader due to number
of entity represented in this model. The first group (box I) represents typical charac-
teristics of global software development process as suggested by many literatures in

www.manaraa.com

 In-Time Role-Specific Notification 213

distributed and global software engineering domain such as in [9] [10] and [12]. The
distributed participants with different culture, different language may have impact in the
content of information being exchanged, as the result team members sometimes have
misinterpretation or misunderstanding of the conveyed message, on the other hand the
distant location and different time zone, make face-to face communication such as daily
synchronization more expensive, worth more effort and hard to coordinate.

The second group (box II), express the need for more intensive communication
among team members due to their work dependencies and changing in project envi-
ronment (e.g. requirement and artifact changes), however as direct communication is
infrequent in GSD context, in group 3 (box III) reveals that the communication of
changes are committed either in informal way or by subscribing to work tools as
described in introduction.

The fourth group (box IV) illustrates the undesirable effects due to current communi-
cation methods in Agile-GSD project. As the team member missed vital information this
will cause lack of awareness of important project status concerning his work context.
This information deficiency may lead team member to perform a task with flaw direc-
tion, and increase the possibility of versioning problem, rework and delay. The tool sub-
scribed method, often shower a team member with information spam; consequently he
needs more effort to select which information is relevant for his current work context,
which sometimes can be a frustrating task. Both of these undesirable effects (lack of
awareness and more reading effort) will decrease the developer motivation, and eventu-
ally will have larger impact to overall development process.

3.2 Research Issues

Based on Current Reality Tree in section 3.1, direct communications between team
members are extensively required by agile methods but missing in GSD due to cost
and effort allocation as the result of geographical distribution. Hence, the agile prac-
tices adoption in GSD settings will face greater challenge to traditional GSD project.

This hybrid Agile-GSD projects requires a novel method which promise cost and
effort reduction in information exchanges between GSD team members. One solution
is to automate the communication supported by tools as described in related work,
however the challenge is how much formalization of communication is enough, as in
agile context, we still need to maintain some aspect of flexibility due to project uncer-
tainty. Therefore in this paper we propose two research questions which are:

(a) What kind of communication can be automated during development processes?
(b) How can tools support such automation?

To address these research issues, we introduce a framework to define notification
for development team member which allows:

o Measurement of notification effectiveness, and effort. To determine the effec-
tiveness and effort of key communication and the value of notification in global
software development project in formal way without compromising the use of
agile practices.

o Formalizing key communication in an agile environment. We provide example
scenarios from industry background to explain the concept of formalization of key
communication in form of notification exchanges between GSD team members.

www.manaraa.com

214 D. Wahyudin et al.

o To provide method and tool support to implement communication support. Tool
support to increase the effectiveness and efficiency of key communication in
global software development project in formal way without compromising the
use of agile practices. We also perform initial empirical evaluation from one of
the scenarios as the proof of concept.

3.3 In-Time Role-Specific Notification: Definition and Concept

In global software development setting, collaboration between team members from
multiple sites is essential. Figure 2 illustrates the typical work and collaboration in
GSD, here a team member first assigned a role within specified work context, e.g.
project manager, developer, and tester, in certain location. In agile practices, role
assignment may not be a static position, for example a team member can be assigned
as software architect at the beginning of the project, later he can act as a developer
once the designs and specifications completed.

Based on current assigned role, a team member should perform some activities or
task typically supported by a set of work tools to deliver software artifacts. Every
change of software artifacts can be considered as an event which is also typically
recorded in the work tool where the event happened. Typically works in GSD envi-
ronment are not stand alone; a team member may have dependencies of artifact de-
veloped by other team members. Based on these dependencies, a team member needs
to be notified for certain events represent changes of the artifact. Hence he should
specify a notification and retrieve the correct notification in time. To receive informa-
tion which is delayed, partial or not relevant will reduce a team member work per-
formance and also may affect other development tasks performed by other team
members who depend on his deliverables, as the consequences the project may face
some risky condition such as version conflict, release delay, and quality reduction of
to-be delivered software.

Fig. 2. GSD Team Member role, and the need for notification based on his current work
dependencies

3.3.1 In-Time Role-Specific Notification Definition
We define a notification as an object that collects information about status changes,
errors, early warnings and other time-relevant project status information to be

www.manaraa.com

 In-Time Role-Specific Notification 215

presented to target roles. A notification can be triggered by events, correlation of
events or measurement data passing pre-defined threshold during project execution.
For example a tester needs to be notified when a developer closed a development
ticket (ticket closing events), which required to be tested before adding the new code-
set to current body of code of to-be delivered software.

The meaning of in-time aims to localized notification to meet the user expectation
of particular timely effective information awareness, as he may only concern to be
notified for relevant project status changes in particular time of deliverable (immediately,
or summarized) and within his current work context (e.g. what I’m doing now, with
whom/what my work connected with) and consider other out of context and delayed
notification as information waste or noise. Meanwhile the role-specific term means to
deliver the notification to the right notification user.

3.3.2 Notification Specification: How Much Formalization Is Enough?
The intention to specify a notification is to provide correct notification for target user
in formal way. In our context a notification derived from selected key communication
between team members. We use three selection criteria to select which key communi-
cations are worth enough for formalization and automation by tool support, such as:
(a) the key communication is significantly important to support collaboration of GSD
team members according to circumstances in development processes; (b) repetitive or
frequently occurrences in larger part of development life cycle(e.g. hours and daily
occurrence); and (c) data transmitted has significant probability of risks, such as to
become lost, error, impartial or delayed in manual way of transmission. Table 1
provides some examples of key communication selection for formalization and auto-
mation, these key communications passed the first selection criteria as considered
important to support collaboration in GSD.

Based on our Industry background we assumed the values of the selection criteria
for each key communication as described in table 1, communication of changes of
requirements and components are feasible for formalization and automation. After
selection of key communication, the next step is to specify what kind of notification
should be provided for target user. The specification also needed to localize the scope
of formalization as we only need to formalize several relevant aspect of key commu-
nication, and leave the rest to stay flexible.

Table 1. Examples of Key Communication Selection in Agile-GSD settings

Key Communctions Roles Involved Frequency of
Occurrence

Risk
of loss and
delay

Need for
Formalization

Changes in
 requirements

Project manager,
developer, tester Medium High Yes

Requirement traces
Project manager,
developer High High Yes

Component changes Developer High High Yes
Fix defects in code Developer High Low No

Fill in plan
Project manager,
Technical leader, QA Low Low No

www.manaraa.com

216 D. Wahyudin et al.

There are several elements of key communication that should be formalized to specify
a notification such as: processes performed during communication task (e.g. impact
analysis of requirement change, decision approval for requirement change), all roles
involved in information exchange (e.g. project manager as target user, and developer as
events provider in changing requirement scenario, see section 4), data transmitted
during communication (e.g. traceability information of requirement), distributed
events to publish-subscribed the notification (e.g. source code element changes pub-
lished by the developer to trigger notification consumed by the project manager), and
delay allowance of notification represents the time between artifact/requirement
changes and capturing of notification by target user.

The next step of formalization is to model the work-flow to trigger the notification
from abovementioned elements. We can use a process centric model such as IDEF0 or
extension of UML proposed by Penker and Eriksson [6]. In this paper we use Penker and
Eriksson extension to illustrate notification for proposed scenario in section 4, as this
extension offers more capability in expressing and formalization of notification by miti-
gating the ambiguity often associated with narrative specifications or scenarios.

3.3.3 Rules Definition and Notification Escalation
In order to deliver and present notification in-time and within context of particular roles,
those we need to formulate the notification rule. The syntax to formulate notification
rules consists of the following parts: Notify <whom> in <what way> (e.g., e-mail, SMS,
entry in change log) by <when> (e.g., immediately; batch every hour/day) concerning
<in which context> (e.g. implement particular task, managing certain project) due to
<change event> (e.g. requirement changes, component changes).

Whom: list of persons, roles, or groups. Change can be any observable or derived
event or state change regarding an artifact or project state, e.g., some expected event did
not happen during the given time window. While context can be any task that assigned to
the user, and selected as his current work focus or need to be notified when certain
changes occur. For example in requirement changes scenario as described in section 4, a
notification for John a developer if particular requirement changed, can be described as:
Notify John in his Eclipse workspace, immediately concerning his task T1 to implement
requirement R1 due to changes of Requirement R1.

If a condition can not be handled by the system based on the rule set, and then the
issue should be escalate to a sufficiently competent role that can provide a reasonable
decision. For example in continuous integration build scenario as applied in XP adop-
tion in distributed off-shore project by [13], in this scenario typically a developer will
automatic build his code before send it to the repository. For each build he will get
notification of build status either success or broken build, however in certain situation
such as in an approaching deadline, if a developer experiences too many build failures
which is risky situation as there is possibility of he may not deliverer his task on-time.
This issue should be escalated to the project manager, so then he can take some ap-
propriate counter measures to address such risk. This example reveals the benefit of
notification as early warning sign that may be used to complement information from
developer, and to reduce delay for information dissemination.

www.manaraa.com

 In-Time Role-Specific Notification 217

3.3.4 Derived Measurement
The value of in-time role-specific notification influenced by several factors that can
be measured such as:

o Effort (E) is an accumulation of work hours to prepare (Tpr), to process (Tpc)
and to create notification of changes (Tcr). Integrated tools’ plug-ins supported
notification should be able to reduce significantly the overall effort allocated by
the GSD team members.

Here we can formulate effort as

 E= Tpr+Tpc+Tc (1)

o Correct Notification (CN) is number of notifications created and transmitted to
target user within the scope of pre-defined specification.

o False Positives (FP) is number of notifications determined not in the scope of
correct specified notifications for a target user.

o False Negatives (FN) indicates number of notifications determined in the scope
of correct specified notifications but do not reach target users

o Effectiveness (EF) is number of correct notifications (CN) in proportion to all
generated notifications (GN) for a specified notification set (SN). We expect that
tool support increase notification transmission effectiveness as expected in agile
context.

Here we can formulate:

 EF= CN/GN (2)
 GN = CN + FP+ EF (3)

These factors are considered as general measurement of value of notification and
should be applicable to almost every scenario in GSD and Agile context. We can use
this measurement for balancing agility and formalism in notification, by comparing
the results of several alternatives of delivering the notification. For example in sce-
nario described in section 5 we can compare the effort needed by two traditional al-
ternatives of requirement tracing (with Excel and Req.Pro) with our proposed plug-in
alternatives, if the results reveal that plug-in offers significant effort reduction with
respect to cost to develop such plug-in, then GSD project manager may need to con-
sider to apply such alternatives, on the other hand if the effort reduction is considered
not worth enough compare to plug-in development’s cost and other set-up effort, then
PM may just discard the idea of the plug-in approach.

3.4 Tool Integration and Support

In this work we propose the presentation of notifications in the user interface of a tool
routinely used by the target role in order to reduce team member refusal due to ”another-
tool-syndrome”. Tool support mostly consists of tool sets (requirements, development,
configuration, tracking and test tools) that can interact in principle providing the basis for
redundancy-free, consistent storage of data and exchange of data between tools (via tools
interfaces). Tool-based notification also promise cost-reduction which make information
exchange can be much more affordable in GSD context, moreover a comprehensive tool
support is needed to enable consistent, error-free, and up-to-date information exchange in

www.manaraa.com

218 D. Wahyudin et al.

a GSD context. The interfacing between tools using plug-ins can support information
exchange of events recorded by tools during project execution.

Tool support allows to implement notifications using a rule engine, which can be
captured and processed into meaningful information or notification using complex
events processing techniques [11] e.g., a correlated events processor (CEP). Figure 2
illustrates how GSD work tools can be connected to an enterprise service BUS (ESB)
using plug-ins (plug-ins integration). These plug-ins captured particular events occur
in the tools, and publish the events to the ESB in XML format. These events later
captured and processed by the CEP, and if a measurement threshold or certain rules
apposite with an event or correlated events then a notification (also in XML format) is
triggered and published to the ESB. Some subscribed tools’ plug-ins consumes the
notification and presents it to the user as part of their work tools. In summary these
plug-ins act as notification or event publisher and as notification subscriber/consumer,
and can be configured dynamically by the user (GUI-based configuration for a gen-
eral user and an event selection pattern language for more sophisticated user).

In continuous integration practices, some activity triggering automation (e.g.,
automatic build and automatic test) benefit agile software development by reducing
effort and time for certain tasks, these activities also may trigger events that consider-
able worth noting for roles involved in development process such as build status,
build error. Correlating these events (e.g. correlating build failures for particular task
in certain period of time) can derive time-relevant status information such as quality
degradation and quality prediction of software product.

Fig. 3. Integrated tool support for In-time Role-Specific Notification in Agile-GSD settings

4 Example Scenario

The following scenario illustrates how in-time role specific notification provides
support to current global software development especially when agile practices intro-
duced to the development processes. We provide initial empirical evaluation based on
the result of implementation of the scenario. In this scenario several distributed team

www.manaraa.com

 In-Time Role-Specific Notification 219

members such as a project manager on site A who has responsibility in requirement
management which later implemented by the developer from site B. The project man-
ager manages the requirement in requirement management tool such as Requisite Pro,
while the developers use IDE tool such as Eclipse as their development platform. If a
change of requirement X arrives from the customer, accordingly the project leader
performs impact analysis, in order to decide whether such change should be implemented
or not (see figure 4), he needs to know the current status from developer who assigned
to implement the requirement X, and what kind of impact may derived by this change
e.g. risks and cost.

Typically developers in GSD create some Excel matrices to store traceability in-
formation of implementation status which can be considered as ad-hoc approach or
systematically draw a license for the project’s requirements management tool (e.g.
Req.Pro). Project manager then manually assesses this information, performs the
analysis and creates an impact report as the basis of decision approval whether a
change should be implemented or not. Based on this scenario, we can define the im-
pact analysis as the processes, project manager and developer as roles involved in
this process, and traceability information transmitted by the developer as key com-
munication to be automated. Let’s assume that we extended the functionality of tools
used by developer (Eclipse) and project manager (Req.Pro) with plug-ins to provide
interface between the two tools. In this extended scenario whenever a developer
committed some changes in his code set, the Eclipse plug-in will store this event and
correlate these changes to relevant requirement (Req.X), and automatically publish a
requirement traces notification (N) consists of developer ID, source code elements that
have been changed, date of changes and its correlation with Req.X. The Req.Pro plug-in
which subscribed for this type of notification then captures notification N from the
integrated work tools BUS (see figure 3), and present this notification in the project man-
ager’s Req.Pro interface.

Fig. 4. Impact Analysis is performed by project manager based on requirement traceability
information from the developer

www.manaraa.com

220 D. Wahyudin et al.

Despite of cost and effort reduction, as result of automation, this approach can
benefit distributed project controlling as a project managers can decide if a require-
ment should be changed although development has already been started. They can
also easily get in contact with the developer that is working on it to ask him about the
current progress or potential implications. As the consequences notification may en-
hance the impact analysis processes in order to avoid potentially dangerous situation
such as to put barrier to the developer against risky or unnecessary changes (as in
Scrum before a Sprint release).

5 Initial Empirical Evaluations

We performed an initial feasibility study of the integrated tool plug-in support for
scenario of requirement traces to support impact analysis as described. In order to
compare the plug-in-based approach with other alternatives, we observed a set of
projects at Siemens PSE to evaluate the tracing efforts, correctness and completeness
of each alternative. The projects were different in domain (transportation systems,
telecommunication, etc.), but similar in size: medium size projects, with 2 to 4 sites
(e.g., Austria, Romania, Slovakia), and between 10 and 60 team members.

The number of requirements of each project is between 150 and 300; number of
source code methods to be traced range from 6000 to 13000, while number or traces
per requirements is between 150 and 300. Based on these project setting factors we
compared the effort to trace requirements to source code methods, the completeness
and correctness of traces for the tracing alternatives described in section 4. For more
detail information and scenario of evaluation can be found in Heindl et al. [8].

Comparison of the 3 alternatives of requirement tracing, reveal that using plug-in alter-
natives for tracing requirement may significantly reduce the effort of developer teams and
increasing completeness and correctness of tracing. Heindl et al., also reported such im-
provement lead to higher developer motivation, as developer will have more awareness of
changes in requirement, lower effort to trace the requirement and more confidence of
correctness of trace information, which also reduce possibility of delay or rework.

Table 2. Comparison of Tracing Effort and Tracing Qualities, source Heindl et al. [8]

Effort for tracing (in working hours) Tracing Qualities
For 150
requirements

For 300
requirements

Correctness
(%)

False Positives
(%)

Ad-hoc 450 to 1350 900 to 2700 5% to 30% 5-10%
Systematic 50 to 167 99 to 334 20% to 40% 10%
Continuous/
Plug in

8 to 26 16 to 53 60% to 75% 5%

In this paper we compare three alternatives of requirement tracing, and to investi-

gate the continuous tracing approach using in-time role-specific notification concept
on the effort and quality of traces. However as reported by Heindl et. al, this approach
will have greater benefit for medium to large projects, as for smaller projects, the
tracing effort might be too high compare to traditional ad-hoc tracing. Automation of

www.manaraa.com

 In-Time Role-Specific Notification 221

notification in this scenario also has to consider the amount of investment needed
especially in project with a low number of requirements and requirement changes.

We use requirement tracing scenario for our initial evaluation because we believe
that changing of requirements is the most prominent factor in current software devel-
opment which need more attentions from the development teams.

6 Discussion

From related work, we can conclude that agile practices adoption in GSD settings
may provide several benefits needed by current industry. However one challenge is to
provide a means of communication and information exchanges between team mem-
bers concerning occurrence of changes. Referring to our initial research questions,
distributed project needs to define some key communications which is feasible for
automation in order to reduce cost and effort. In our initial feasibility study we se-
lected traceability of requirement changes as the key communication that can be
automated. The integration of plug-in for developer’s tool (Eclipse) and project man-
ager’s tool (Req.Pro), provide an interface between the tools, which allows automating
this key communication.

The framework also allows measurement of the value of notification, as in our ini-
tial empirical study we found that integration of tool support significantly reduces the
effort for requirement tracing compared to more expensive time consuming alternatives
(e.g. using Excel and Requisite Pro) which are commonly used in current GSD projects.
However the evaluation of the concept from other context ofagile-distributed develop-
ment such as different development process scenarios and measuring it’s the impact to
overall development performance will be further work.

7 Conclusions

In the paper we proposed a concept of role-specific and context-aware notification
supported by integrated tools and oriented towards distributed projects. The goal was
to complement current distributed project controlling mechanisms and to address
communication issues associated with application of agile practices in GSD settings.

Formalization and automation of some key communications between team mem-
bers in a form of notification may provide benefits such as cost and effort reduction
but seems limited to GSD settings. Moreover, we believe that such notification will
provide GSD team members with more timely and context-aware information on
project status changes. Our initial empirical evaluation provided promising results.
However, we would like to perform similar evaluation in the industrial setting with
larger size of development team.

Acknowledgments. We would like to thank Franz Reinisch from Siemens PSE Aus-
tria and Prof. A Min Tjoa from IFS TU Wien for their contributions to the paper. The
paper has been partly supported by The Technology-Grant-South-East-Asia No.
1242/BAMO/2005 Financed by ASIA-Uninet. More details on In-time Role-Specific
Notification can be found in our technical report, available at http://qse.ifs.tuwien.
ac.at/publications.htm.

www.manaraa.com

222 D. Wahyudin et al.

References

1. Boehm, B.: Get ready for agile methods, with care. Computer 35(1), 64–69 (2002)
2. Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed. Ad-

dison-Wesley Longman Publishing Co., Inc., Boston (2003)
3. Dettmer, H.: Goldratt’s Theory of Constraints: A System Approach to Continuous Im-

provement. Quality Press (1997)
4. de Souza, C., Redmiles, D., Mark, G., Penix, J., Sierhuis, M.: Management of interdepend-

encies in collaborative software development. In: International Symposium on Empirical
Software Engineering, 2003. ISESE 2003, pp. 294–303 (2003)

5. de Souza, C., Basaveswara, S., Redmiles, D.: Supporting global software development
with event notification servers. In: The ICSE 2002 International Workshop on Global
Software Development (2002)

6. Eriksson, H.E., Penker, M.: Business Modeling With UML: Business Patterns at Work.
John Wiley & Sons, Inc., New York (1998)

7. Fowler, M.: Using agile process with offshore development (June 2007),
http://www.martinfowler.com/articles/agileOffshore.html

8. Heindl, M., Reisnich, F., Biffl, S.: Integrated Developer Tool Support for More Efficient
Requirements Tracing and Change Impact Analysis, Technical Report. Institute f. Soft-
ware Technology and Interactive System, Vienna University of Technology (2007)

9. Herbsleb, J., Moitra, D.: Global software development. Software, IEEE 18(2), 16–20
(2001)

10. Herbsleb, J.D., Paulish, D.J., Bass, M.: Global software development at Siemens: experi-
ence from nine projects. In: Inverardi, P., Jazayeri, M. (eds.) ICSE 2005. LNCS, vol. 4309,
pp. 524–533. Springer, Heidelberg (2006)

11. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in Dis-
tributed Enterprise Systems. Addison-Wesley, Reading (2002)

12. Mockus, A., Herbsleb, J.: Challenges of global software development. In: Seventh Interna-
tional Software Metrics Symposium, 2001. METRICS 2001, pp. 182–184 (2001)

13. Nisar, M., Hameed, T.: Agile methods handlfing offshore software development issues. In:
8th International Multitopic Conference, 2004. Proceedings of INMIC 2004, pp. 417–422
(2004)

14. Paasivaara, M., Lassenius, C.: Could global software development benefit from agile
methods? In: International Conference on Global Software Development, pp. 109–113
(2006)

15. Perry, D.E., Staudenmayer, N., Votta, L.G.: People, organizations, and process improve-
ment. IEEE Softw. 11(4), 36–45 (1994)

16. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall PTR,
Upper Saddle River (2001)

17. Vessey, I., Sravanapudi, A.P.: Case tools as collaborative support technologies. Communi-
cation of ACM 38(1), 83–95 (1995)

18. Xiaohu, Y., Bin, X., Zhijun, H., Maddineni, S.: Extreme programming in global software
development. In: Canadian Conference on Electrical and Computer Engineering, 2004,
vol. 4, pp. 1845–1848 (2004)

www.manaraa.com

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 223–237, 2008.
© IFIP International Federation for Information Processing 2008

An Integrated Approach for Identifying Relevant
Factors Influencing Software Development Productivity

Adam Trendowicz1, Michael Ochs1, Axel Wickenkamp1, Jürgen Münch1,
Yasushi Ishigai2,3, and Takashi Kawaguchi4

1 Fraunhofer IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
{trend,ochs,wicken,muench}@iese.fraunhofer.de

2 IPA-SEC, 2-28-8 Honkomagome, Bunkyo-Ku, Tokyo, 113-6591, Japan
ishigai@ipa.go.jp

3 Research Center for Information Technology Mitsubishi Research Institute, Inc.
3-6, Otemachi 2-Chome, Chiyoda-Ku, Tokyo, 100-8141, Japan

ishigai@mri.co.jp
4 Toshiba Information Systems (Japan) Corporation, 7-1 Nissin-Cho,

Kawasaki-City 210-8540, Japan
kawa@tjsys.co.jp

Abstract. Managing software development productivity and effort are key is-
sues in software organizations. Identifying the most relevant factors influencing
project performance is essential for implementing business strategies by select-
ing and adjusting proper improvement activities. There is, however, a large
number of potential influencing factors. This paper proposes a novel approach
for identifying the most relevant factors influencing software development pro-
ductivity. The method elicits relevant factors by integrating data analysis and
expert judgment approaches by means of a multi-criteria decision support tech-
nique. Empirical evaluation of the method in an industrial context has indicated
that it delivers a different set of factors compared to individual data- and expert-
based factor selection methods. Moreover, application of the integrated method
significantly improves the performance of effort estimation in terms of accuracy
and precision. Finally, the study did not replicate the observation of similar in-
vestigations regarding improved estimation performance on the factor sets re-
duced by a data-based selection method.

Keywords: Software, development productivity, influencing factors, factor se-
lection, effort estimation.

1 Introduction

Many software organizations are still proposing unrealistic software costs, work
within tight schedules, and finish their projects behind schedule and budget, or do not
complete them at all [23]. This illustrates that reliable methods to manage software
development effort and productivity are a key issue in software organizations. One
essential aspect, when managing development effort and productivity, is the large num-
ber of associated and unknown influencing factors (so-called productivity factors) [27].

www.manaraa.com

224 A. Trendowicz et al.

Identifying the right productivity factors increases the effectiveness of productivity im-
provement strategies by concentrating management activities directly on those develop-
ment processes that have the greatest impact on productivity. On the other hand, focusing
measurement activities on a limited number of the most relevant factors (goal-oriented
measurement) reduces the cost of quantitative project management (collecting, analyzing,
and maintaining the data). The computational complexity of numerous quantitative meth-
ods grows exponentially with the number of input factors [4], which significantly restricts
their industrial acceptance.

In practice, two strategies to identify relevant productivity factors, promoted in the re-
lated literature, are widely applied. In expert-based approaches, one or more software
experts decide about a factor’s relevancy [24]. In data-based approaches, existing meas-
urement data, covering a certain initial set of factors, are analyzed to identify a subset of
factors relevant with respect to a certain criterion [6, 10]. These factor selection strategies
have, however, significant practical limitations when applied individually. Experts usu-
ally base their decisions on subjective preferences and experiences. In consequence, they
tend to disagree largely and omit relevant factors while selecting the irrelevant ones [24].
The effectiveness of data-based methods largely depends on the quantity and quality of
available data. They cannot identify a relevant factor if it is not present in the initial
(input) set of factors. Moreover, data analysis techniques are usually sensitive to messy
(incomplete and inconsistent) data. Yet, assuring that all relevant factors are covered by a
sufficient quantity of high-quality (i.e., valid, complete, and consistent) measurement
data is simply not feasible in practice.

In this paper, we propose an integrated approach to selecting relevant productivity
factors for the purpose of software effort estimation. We combine expert- with data-
based factor selection methods, using a novel multi-criteria decision aid method
called AvalOn. The presented approach is then evaluated in the context of a large
software organization.

The remainder of the paper is organized as follows. Section 2 provides an overview
of factor selection methods. Next, in Section 3, we present the integrated factor selec-
tion method, followed by the design of its empirical evaluation (Section 4) and an
analysis of the results (Section 5). The paper ends with conclusions and further work
perspectives (Section 6).

2 Related Work

Factor selection can be defined as the process of choosing a subset of M factors from
the original space of N factors (M≤N), so that the factor space is optimally
reduced according to a certain criterion. In principle, the selection process may be
based on data analysis, expert assessments, or on both, experts and data. In expert-
based factor selection, the factor space N is practically infinite and not known a pri-
ori. One or more experts may simply select a subset of relevant factors and/or weight
factors with respect to their relevancy (e.g., using the Likert scale [21]). Factor rank-
ing is equal to assigning discrete weights to them. In data-based factor selection, the
factor space N is known and determined by available measurement data. Most of the
factor selection methods originate from the data mining domain and belong to the so-
called dimensionality reduction methods [8]. In principle, data-based selection methods

www.manaraa.com

 An Integrated Approach for Identifying Relevant Factors 225

assign weights to available factors. Weight may be dichotomous (factor selection),
discrete (factor raking), or continuous (factor weighting).

The purpose of factor selection methods in software effort estimation is to reduce a
large number of potential productivity factors (cost drivers) in order to improve
estimation performance while maintaining (or reducing) estimation costs. Moreover,
information on the most relevant influence factors may be used to guide measurement
and improvement initiatives. In practice (authors’ observation), relevant cost drivers
are usually selected by experts and the selection process is often limited to uncritically
adopting factors published in the related literature. Software practitioners adopt the
complete effort model along with the integrated factors set (e.g., COCOMO [3]) or
build their own model on factors adapted from an existing model. In both situations,
they risk collecting a significant amount of potentially irrelevant data and getting
limited performance of the resulting model.

In the last two decades, several data-based approaches have been proposed to sup-
port software organizations that are already collecting data on arbitrarily selected
factors in selecting relevant factors. Various data analysis techniques were proposed
to simply reduce the factor space by excluding potentially irrelevant ones (factor
selection). The original version of the ANGEL tool [19] addressed the problem of
optimal factor selection by exhaustive search. However, for larger factor spaces
(>15-20), analysis becomes computationally intractable due to its exponential com-
plexity. Alternative, less computationally expensive factor selection methods pro-
posed in the literature include Principal Component Analysis (PCA) [22], Monte
Carlo simulation (MC) [12], general linear models (GLM) [13], and wrapper factor
selection [10, 6]. The latter approach was investigated using various evaluation mod-
els (e.g., regression [6], case-based reasoning [10]), and different search strategies
(forward selection [6, 10], as well as random selection and sequential hill climbing
[10]). In all studies, significant reduction (by 50%-75%) of an initial factors set and
improved estimation accuracy (by 15%-379%) were reported. Chen et al. [6] con-
clude, however, that despite substantial improvements in estimation accuracy, remov-
ing more than half of the factors might not be wise in practice, because it is not the
only decision criterion.

An alternative strategy to removing irrelevant factors would be assigning weights
according to a factor’s relevancy (factor weighting). The advantage of such an ap-
proach is that factors are not automatically discarded and software practitioners obtain
information on the relative importance of each factor, which they may use to decide
about the selection/exclusion of certain factors. Auer et al. [1] propose an optimal
weighting method in the context of the k-Nearest Neighbor (k-NN) effort estimator;
however, exponential computational complexity limits its practical applicability for
large factor spaces. Weighting in higher-dimensionality environments can be, for
instance, performed using one of the heuristics based on rough set analysis, proposed
recently in [11]. Yet, their application requires additional overhead to discretize
continuous variables.

A first trial towards an integrated factor selection approach was presented in [2],
where Bayesian analysis was used to combine the weights of COCOMO II factors
based on human judgment and regression analysis. Yet, both methods were applied on
sets of factors previously limited (arbitrarily) by an expert. Moreover, experts weighted
factor relevancy on a continuous scale, which proved to be difficult in practice and

www.manaraa.com

226 A. Trendowicz et al.

may lead to unreliable results [24]. Most recently, Trendowicz et al. proposed an
informal, integrated approach to selecting relevant productivity factors [24]. They
used an analysis of existing project data in an interactive manner to support experts in
identifying relevant factors for the purpose of effort estimation. Besides increased
estimation performance, the factor selection contributed to increased understanding
and improvement of software processes related to development productivity and cost.

3 An Integrated Factor Selection Method

In this paper, we propose an integrated method for selecting relevant productivity
factors. The method employs a novel multi-criteria decision aid (MCDA) technique
called AvalOn to combine the results of data- and expert-based factor selection.

3.1 Expert-Based Factor Selection

Expert-based selection of relevant productivity factors is a two-stage process [24].
First, a set of candidate factors is proposed during a group meeting (brainstorming
session). Next, factor relevancy criteria are identified and quantified on the Likert
scale. Example criteria may include a factor’s impact, difficulty, or controllability.
Impact reflects the strength of a given factor’s influence on productivity. Difficulty
represents the cost of collecting factor-related project data. Finally, controllability
represents the extent to which a software organization has an impact on the factor’s
value (e.g., a customer’s characteristics are hardly controllable). Experts are then
asked to individually evaluate the identified factors according to specified criteria.

3.2 Data-Based Factor Selection

Data-based selection of relevant productivity factors employs one of the available
factor weighting techniques. As compared to simple factor selection or ranking tech-
niques, weighting provides experts with the relative distance between subsequent
factors regarding their relevance. Selected weighting should be applicable to regres-
sion problems, i.e., to the continuous dependent variable (here: development produc-
tivity). Given the size of the factor space, optimal weighting [1] (small size) or
weighting heuristics [11] (large size) should be considered. In this paper, we employ
the Regression ReliefF (RRF) technique [16]. RRF is well suited for software engi-
neering data due to its robustness against sparse and noisy data. The output of RRF
(weighting) reflects the ratio of change to productivity explained by the input factors.

3.3 An Integrated Factor Selection Method

Integrated factor selection combines the results of data- and expert-based selections
by means of the AvalOn MCDA method. It is the hierarchically (tree) structured
model that was originally used in COTS (Commercial-of-the-shelf) software selection
[15]. AvalOn incorporates the benefits of a tree-structured MCDA model such as the
Analytic Hierarchy Process (AHP) [17] and leverages the drawbacks of pair-wise
(subjective) comparisons. It comprises, at the same time, subjective and objective

www.manaraa.com

 An Integrated Approach for Identifying Relevant Factors 227

measurement as well as the incorporation of uncertainty under statistical and simula-
tion aspects. In contrast to the AHP model, which only knows one node type, it dis-
tinguishes several node types representing different types of information and offering
a variety of possibilities to process data. Furthermore, AvalOn offers a weight rebal-
ancing algorithm mitigating typical hierarchy-based difficulties originating from the
respective tree structure. Finally, it allows for any modification (add, delete) of the set
of alternatives while maintaining consistency in the preference ranking of the alterna-
tives.

3.3.1 Mathematical Background of the AvalOn Method
As in many MCDA settings [25], a preference among the alternatives is processed by
summing up weight x preference of an alternative. In AvalOn (Fig. 1), this is accom-
plished for the node types root, directory, and criterion by deploying the following
abstract model in line with the meta-model structure:

∑
∈

⋅=
)(

)()(
isubnodesj

jji aprefwapref ,

where i is a node in the hierarchy, a the alternative under analysis, subnodes(i) the set
of child/sub-nodes of node i, prefj(a)∈[0..1] the preference of a in subnode j, and
wj∈[0..1] the weight of subnode j. Hence prefi(a) ∈[0..1].

-global ranking

AvalOn.sub1
-local ranking
-local weight

Directory

1 1..*

is structured into

-local ranking
-local weight

Criterion

-local ranking
-local weight

Model

Metric

Cost Estimation Factor

1
1..*

is decomposed into

1

0..*

is structured into

1

1..*

is decomposed into

11..* is quantified by

0..1

0..*

is refined into

11
is associated with

*

1

receives data from

Fig. 1. Meta-model for factor selection

In each model, a value function (val) is defined, building the relation between data
from {metrics x alternatives} and the assigned preference values. val may be defined
almost in an arbitrary way, i.e., it allows for preference mappings of metric scaled
data as well as categorical data.

In this way, val can model the whole range of scales from semantic differential,
via Likert to agreement scales. Please note that when calculating prefi(a) on the low-
est criterion level, the direct outputs of the function val in the subnodes, which
are models in this case, are weighted and aggregated. The full details of the general
model definition for val is described in [18]. In this context, two examples for val, one

www.manaraa.com

228 A. Trendowicz et al.

metric scaled (figure on the left), and one categorical (figure on the right), are given in
Fig. 2. On the x-axis, there are the input values of the respective metric, while the y-
axis shows the individual preference output val. A full description of the AvalOn
method can be found in [15, 18].

Fig. 2. Example val models

3.3.2 Application of the AvalOn Method
AvalOn allows for structuring complex information into groups (element directory in
the meta-model) and criteria (element criterion in the meta-model). Each directory as
well as each criterion may be refined into sub-directories and sub-criteria. Each (sub)-
criterion may then be refined into individual model(s) and sub-models. The models
transform the measurement data coming from each alternative into initial preference
values. The models providing the preferences based on each measurement by alterna-
tive are associated with a set of previously defined metrics. Bottom-up, the data
coming from each alternative to be potentially selected (here: productivity factors) are
then processed through the models and aggregated from there to the criteria and direc-
tory level(s). Finally, in the root node (here: AvalOn.sub1), the overall preference of
the productivity factors based on their data about individual metrics is aggregated
using a weighting scheme that is also spread hierarchically across the tree of decision
(selection) criteria. The hybrid character of the setting in this paper can be modeled by
combining expert opinion and objective data from, e.g., preliminary data analyses,
into criteria and models within different directories, and defining an adequate weight-
ing scheme.

4 Empirical Study

The integrated factor selection method proposed in this paper was evaluated in an
industrial context. We applied the method for the purpose of software effort estimation
and compared it with isolated expert- and data-based selection methods. Data-based
factor selection employed the RRF technique [16] implemented in the WEKA data
mining software [26]. Expert-based factor selection was performed as a multiple-
expert ranking (see Section 4.2 regarding the ranking process).

www.manaraa.com

 An Integrated Approach for Identifying Relevant Factors 229

4.1 Study Objectives and Hypotheses

The objective of the study was to evaluate in a comparative study expert- and data-
based approaches and the integrated approach for selecting the most relevant produc-
tivity factors in the context of software effort estimation. For that purpose, we defined
two research questions and related hypotheses:

Q1. Do different selection methods provide different sets of productivity factors?
H1. Expert-based, data-based and integrated methods select different (probably

partially overlapping) sets of factors.
Q2. Which method (including not reducing factors at all) provides the better set of

factors for the purpose of effort estimation?
H2. The integrated approach provides a set of factors that ensure higher per-

formance of effort estimation than factors provided by expert- and data-
based selection approaches when applied individually.

Some effort estimation methods such as stepwise regression [5] or OSR [4] already
include embedded mechanisms to select relevant productivity factors. In our study,
we wanted to evaluate in addition how preliminary factor selection done by an inde-
pendent method influences the performance of such estimation methods. This leads us
to a general research question:

Q3. Does application of an independent factor selection method increase the predic-
tion performance of an estimation method that already has an embedded factor
selection mechanism?

Answering such a generic question would require evaluating all possible estimation
methods. This, however, is beyond the scope of this study. We limit our investigation
to the OSR estimation method [4] and define a corresponding research hypothesis:

H3. Application of an independent factor selection method does not increase
the prediction performance of the OSR method.

Finally, in order to validate replicate the results of the most recent research regard-
ing the application of data-based factor selection to analogy-based effort estimation
(e.g., [6, 10]) we define the following question:

Q4. Does application of a data-based factor selection method increase the prediction
performance of an analogy estimation method?
H4. Application of a data-based factor selection method increases the predic-

tion performance of a k-NN estimation method.

4.2 Study Context and Empirical Data

The empirical evaluation was performed in the context of Toshiba Information Sys-
tems (Japan) Corporation (TJSYS). The project measurement data repository contained
a total of 76 projects from the information systems domain. Fig. 3 illustrates the vari-
ance of development productivity measured as function points (unadjusted, IFPUG)
per man-month.

www.manaraa.com

230 A. Trendowicz et al.

1.00.80.60.40.20.0

Productivity [FP / MM]

p78p77p71

 Median

 25%-75%

 Non-Outlier Range

 Outliers

 Extremes

Fig. 3. Development productivity variance (data presented in a normalized form)

Expert assessments regarding the most relevant factors were obtained from three
experts (see Table 1). During the group meeting (brainstorming session) an initial set
of factors was identified. It was then grouped into project-, process, personnel-, and
product-related factors as well as context factors. The first four groups refer to the
characteristics of the respective entities (software project, development process, prod-
ucts, and stakeholders). The latter group covers factors commonly used to limit the
context of software effort estimation or productivity modeling. The application do-
main, for instance, is often regarded as a context factor, i.e., an effort model is built
for a specific application domain. Finally, experts were asked to select the 5 most
important factors from each category and rank them from the most relevant (rank = 1)
to least relevant (rank = 5).

Table 1. Experts participated in the study

 Expert 1 Expert 2 Expert 3
Position/Role Project manager Developer Quality manager
Experience [#working years] 8 15 3
Experience [#performed projects] 30 15 40

4.3 Study Limitations

Unfortunately, the measurement repository available did not cover all relevant factors
selected by the experts. It was also not possible to collect the data ex post facto. This
prevented us from doing a full comparative evaluation of the three factor selection
methods considered here for the purpose of software effort estimation. In order to at
least get an indication of the methods’ performance, we decided to compare them
(instead of all identified factors) on the factors identified by experts for which meas-
urement data were available. This would represent the situation where those factors
cover all factors available in the repository and identified by experts.

4.4 Study Design and Execution

4.4.1 Data Preprocessing
Measurement data available in the study suffered from incompleteness (44.3% missing
data). An initial preprocessing was thus required in order to apply the data analysis

www.manaraa.com

 An Integrated Approach for Identifying Relevant Factors 231

techniques selected in the study. We wanted to avoid using simple approaches to
handling missing data such as list-wise deletion or mean imputation, which signifi-
cantly reduce data quantity and increase noise. Therefore, we decided to apply the
k-Nearest Neighbor (k-NN) imputation method. It is a common hot deck method, in
which k nearest projects minimizing a certain similarity measure (calculated on non-
missing factors) are selected to impute missing data. It also proved to provide
relatively good results when applied to sparse data in the context of software effort
prediction [14]. Moreover, other more sophisticated (and potentially more effective)
imputation methods required removing factor collinearities beforehand. Such a pre-
processing step would, however, already be a kind of factor selection and might thus
bias the results of the actual factor selection experiment. We adopted the k-NN impu-
tation approach presented in [9]. In order to assure maximal performance of the impu-
tation, before applying it, we removed factors and projects with large missing data
ratio so that the total ratio of missing data was reduced to around one third, however,
with minimal loss of non-missing data. We applied the following procedure: We first
removed factors where 90% of the data were missing and next, projects where more
than 55% of the data were still missing. As a result, we reduced the total rate of miss-
ing data to 28.8%, while losing a minimal quantity of information (removed 19 out of
82 factors and 3 out of 78 projects). The remaining 28.8% of missing data were im-
puted using the k-NN imputation technique.

4.4.2 Empirical Evaluation
Let us first define the following abbreviations for the factor sets used in the study:

FM: factors covered by measurement data.
FMR: relevant FM factors selected by the RReliefF method (factors with weight > 0)
FMR10: the 10% most relevant FMR factors
FE: factors selected by experts
FI: factors selected by the integrated method
FT: all identified factors (FM∪FE)
FC: factors selected by experts for which measurement data are available (FM∩FE)
FCE25: the 25% most relevant FC factors selected by experts
FCR25: the 25% most relevant FC factors selected by the RRF method
FCI25: the 25% most relevant FC factors selected by the integrated method

Hypothesis H1. In order to evaluate H1, we compared factor sets selected by the
data-based, expert-based, and integrated method (FMR, FE, and FI). For the 10 most
relevant factors shared by all three factor sets, we compared the ranking agreement
using Kendall’s coefficient of concordance [20].

Hypothesis H2. In order to evaluate H2, we evaluated the estimation performance of
two data-based estimation methods: k-Nearest Neighbor (k-NN) [19] and Optimized
Set Reduction (OSR) [4]. We applied them in a leave-one-out cross validation on the
following factor sets: FM, FC, FCE25, FCR25, and FCI25.

Hypothesis H3. In order to evaluate H3, we compared the estimation performance of
OSR (which includes an embedded, data-based factor selection mechanism) when
applied on FM and FMR10 factor sets.

www.manaraa.com

232 A. Trendowicz et al.

Hypothesis H4. In order to evaluate H4, we compared the estimation performance of
the k-NN method when applied on FM and FMR10 factor sets.

To quantify the estimation performance in H2, H3, and H4, we applied the com-
mon accuracy and precision measures defined in [7]: magnitude of relative estimation
error (MRE), mean and median of MRE (MMRE and MdMRE), as well as prediction
at level 25% (Pred.25). We also performed an analysis of variance (ANOVA) [20] of
MRE to see if the error for one approach was statistically different from another. We
interpret the results as statistically significant if the results could be due to chance less
than 2% of the time (p < 0.02).

5 Results of the Empirical Study

Hypothesis H1: Expert-based, data-based and integrated methods select different
(probably partially overlapping) sets of factors.

After excluding the dependent variable (development productivity) and project ID,
the measurement repository contained data on 61 factors. Experts identified a total of
34 relevant factors, with only 18 of them being already measured (FC). The RRF
method selected 40 factors (FMR), 14 of which were also selected by experts. The
integrated approach selected 59 factors in total, with only 14 being shared with the
former two selection methods. Among the FC factors, as many as 8 were ranked by
each method within the top 10 factors (Table 2). Among the top 25% FC factors se-
lected by each method, only one factor was in common, namely customer commit-
ment and participation. There was no significant agreement (Kendall = 0.65 at
p=0.185) between data- and expert-based rankings on the FC factors. The integrated
method introduced significant agreement on ranks produced by all three methods
(Kendall = 0.72 at p = 004).

Interpretation (H1): Data- and expert-based selection methods provided different
(partially overlapping) sets of relevant factors. Subjective evaluation of the shared
factors suggests that both methods vary regarding the assigned factor’s importance;
yet this could not be confirmed by statistically significant results. The integrated
method introduced a consensus between individual selections (significant agreement)
and as such might be considered as a way to combine the knowledge gathered in ex-
perts’ heads and in measurement data repositories.

Table 2. Comparison of the ranks on FC factors (top 25% marked in bold)

Productivity factor FCE FCR FCI
Customer commitment and participation 3 3 3
System configuration (e.g., client-server) 5 2 5
Application domain (e.g., telecommunication) 1 6 1
Development type (e.g., enhancement) 7 1 4
Application type (e.g., embedded) 2 7 2
Level of reuse 9 4 9
Required product quality 6 10 7
Peak team size 8 9 8

www.manaraa.com

 An Integrated Approach for Identifying Relevant Factors 233

Hypothesis H2: The integrated approach provides a set of factors that ensure higher
performance of effort estimation than factors provided by expert- and data-based
selection approaches when applied individually.

A subjective analysis of the estimates in Table 3 suggests that the k-NN provided
improved estimates when applied on a reduced FC factors set (FCE25, FCR25, and
FCI25), whereas OSR does not consistently benefit from independent factor reduction
(by improved estimates). The analysis of the MRE variance, however, showed that the
only significant (p = 0.016) improvement in estimation performance of the k-NN
predictor was caused by the integrated factor selection method. The OSR predictor
improved its estimates significantly (p < 0.02) only on the FCE25 factors set.

Interpretation (H2): The results obtained indicate that a factors set reduced through
an integrated selection contributes to improved effort estimates. Yet, this does not
seem to depend on any specific way of integration. The k-NN predictor, which uses
all input factors, improved on factors reduced by the AvalOn method. The OSR
method, however, improved slightly on the factors reduced by experts. This interest-
ing observation might be explained by the fact that OSR, which includes an embed-
ded, data-based factor selection mechanism, combined this with prior expert-based
factor selection. Still, the effectiveness of such an approach largely depends on the
experts who determine (pre-select) input factors for OSR (expert-based selection is
practically always granted higher priority).

Table 3. Comparison of various factor selection methods

Predictor Factors Set MMRE MdMRE Pred.25
 FM 73.7% 43.8% 21.3%
 FC 52.6% 40.0% 26.7%
k-NN FCE25 46.3% 38.5% 33.3%
 FCR25 48.3% 36.9% 29.3%
 FCI25 47.5% 33.3% 30.7%
 FM 59.7% 50.8% 17.3%
 FC 65.9% 59.2% 18.7%
OSR FCE25 30.7% 57.9% 24.0%
 FCR25 66.2% 52.1% 14.7%
 FCI25 65.1% 57.9% 14.7%

Hypothesis H3: Application of an independent factor selection method does not in-
crease the prediction performance of the OSR method.

A subjective analysis of OSR’s estimation error (Table 3 and Table 4) suggests that
it performs generally worse when applied on the factors chosen by an independent
selection method. This observation was, however, not supported by the analysis of the

Table 4. Results of data-based factor selection

Predictor Factors Set MMRE MdMRE Pred.25 ANOVA
FM 73.7% 43.8% 21.3%

k-NN
FMR10 56.8% 40.7% 22.7%

p = 0.39

FM 59.7% 50.8% 17.3%
OSR

FMR10 68.1% 59.1% 16.0%
p = 0.90

www.manaraa.com

234 A. Trendowicz et al.

MRE variance. The exception was the FC set reduced by experts (FCE25), on which a
slight, statistically significant improvement of the OSR’s predictions was observed.

Interpretation (H3): The results obtained indicate that no general conclusion regarding
the impact of independent factor selection on the prediction performance of OSR can
be drawn. Since no significant deterioration of estimation performance was observed,
application of OSR on the reduced set of factors can be considered useful due to the
reduced cost of measurement. Yet, improving OSR’s estimates might require a selec-
tion method that is more effective than the selection mechanism embedded in OSR.

Hypothesis H4: Application of a data-based factor selection method increases the
prediction performance of a k-NN estimation method.

A subjective impression of improved estimates provided by the k-NN predictor
(Table 4) when applied on the reduced factors set (FMR10) was, however, not signifi-
cant in the sense of different variances of MRE (p = 0.39). Yet, estimates provided by
the k-NN predictor improved significantly when used on the FC data set reduced by
the integrated selection method (p = 0.016). The two individual selection methods did
not significantly improve performance of the k-NN predictor.

Interpretation (H4): Although a subjective analysis of the results (Table 3 and Table
4) suggests improved estimates provided by the k-NN predictor when applied on
reduced factors sets, no unambiguous conclusion can be drawn. The performance of
k-NN improved significantly only when applied on factors identified from the FC set
by the integrated selection method (the FCI25 set). This might indicate that k-NN’s
performance improvement depends on the applied factor selection method (here, the
integrated method was the best one).

5.1 Threats to Validity

We have identified two major threats to validity that may limit the generalizability of
the study results. First, the estimation performance results of the factor selection
methods investigated, compared on the FC set, may not reflect their true characteris-
tics, i.e., as compared on the complete set of identified factors (threat to hypothesis
H2). Yet, a lack of measurement data prevented us from checking on this. Second, the
RRF method includes the k-NN strategy to search through the factor space and itera-
tively modify factor weights. This might bias the results of k-NN-based estimation by
contributing to better performance of k-NN (as compared to OSR) on factors selected
by RRF (threat to hypotheses H3 and H4).

6 Summary and Further Work

In the paper, we proposed an integrated approach for selecting relevant factors influ-
encing software development productivity. We compared the approach in an empiri-
cal study against selected expert- and data-based factor selection approaches.

The investigation performed showed that expert- and data-based selection methods
identified different (only partially overlapping) sets of relevant factors. The study
indicated that the AvalOn method finds a consensus between factors identified by
individual selection methods. It combines not only the sets of relevant factors, but the
individual relevancy levels of selected factors. We showed that in contrast to

www.manaraa.com

 An Integrated Approach for Identifying Relevant Factors 235

data- and expert-based factor selection methods, the integrated approach may signifi-
cantly improve the estimation performance of estimation methods that do not include
an embedded factor selection mechanism. Estimation methods that include such a
mechanism may, however, benefit from integrating their capabilities with expert-
based factor selection.

The study did not replicate the observation of similar investigations regarding im-
proved estimation performance on the factor sets reduced by a data-based selection
method. Neither of the estimation methods employed in the study (k-NN and OSR)
improved significantly when applied on factor sets reduced by the RReliefF method.
Although k-NN improved in terms of aggregated error measures (e.g., MMRE) the
difference in the MRE variance was insignificant. The results obtained for the OSR
method may indicate that the change of its prediction performance when applied on a
reduced set of factors depends on the selection method used.

Finally, we also observed that the function point adjustment factor (FPAF) was not
considered among the most relevant factors, although factor selection was driven by a
variance on development productivity calculated from unadjusted function point size.
Moreover, some of the factors considered as relevant (e.g., performance require-
ments) belong to components of the FPAF. This might indicate that less relevant sub-
factors of the FPAF and/or the adjustment procedure itself may hide the impact of
relevant factors. Considering sub-factors of FPAF individually might therefore be
more beneficial.

In conclusion, factor selection shall be considered as an important aspect of soft-
ware development management. Since individual selection strategies seem to provide
inconsistent results, integrated approaches should be investigated to support software
practitioners in limiting the cost of management (data collection and analysis) and
increasing the benefits (understanding and improvement of development processes).

Further work will focus on a full evaluation of the three selection strategies pre-
sented on a complete set of measurement data (including data on all factors identified
by experts). Finally, methods to identify and explicitly consider factor dependencies
require investigation. Such information may not only improve the performance of
effort estimation methods, but also the understanding of interactions among organiza-
tional processes influencing development productivity.

Acknowledgments. We would like to thank Toshiba Information Systems Corpora-
tion (Japan) and all involved experts who greatly contributed to the study. We would
also like to thank the Japanese Information-technology Promotion Agency for sup-
porting the study. Finally, we would like to thank Sonnhild Namingha and Marcus
Ciolkowski for reviewing the paper.

References

1. Auer, M., Trendowicz, A., Graser, B., Haunschmid, E., Biffl, S.: Optimal project feature
weights in analogy-based cost estimation: improvement and limitations. IEEE Transactions
on Software Engineering 32(2), 83–92 (2006)

2. Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E., Madachy,
R., Refer, D., Steece, B.: Software Cost Estimation with COCOMO II. Prentice-Hall,
Englewood Cliffs (2000)

www.manaraa.com

236 A. Trendowicz et al.

3. Boehm, B.W.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)
4. Briand, L., Basili, V., Thomas, W.: A Pattern Recognition Approach for Software Engi-

neering Data Analysis. IEEE Transactions on Software Engineering 18(11), 931–942
(1992)

5. Chatterjee, S., Hadi, A.S., Price, B.: Regression Analysis by Example, 3rd edn. Wiley,
Chichester (1999)

6. Chen, Z., Menzies, T., Port, D., Boehm, B.: Finding the right data for software cost model-
ing. IEEE Software 22(6), 38–46 (2005)

7. Conte, S., Dunsmore, H., Shen, V.Y.: Software Engineering Metrics and Models. Benja-
min Cummings, CA (1986)

8. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. Journal of Ma-
chine Learning Research 3, 1157–1182 (2003)

9. Jönsson, P., Wohlin, C.: An Evaluation of k-Nearest Neighbour Imputation Using Likert
Data. In: 10th Int’l Symposium on Software Metrics, pp. 108–118 (2005)

10. Kirsopp, C., Shepperd, M., Hart, J.: Search Heuristics, Case-based Reasoning and Soft-
ware Project Effort Prediction. In: Genetic and Evolutionary Computation Conference, pp.
1367–1374 (2002)

11. Li, J., Ruhe, G.: A comparative study of attribute weighting heuristics for effort estimation
by analogy. In: International Symposium on Empirical Software Engineering, pp. 66–74
(2006)

12. Liang, T., Noore, A.: Multistage software estimation. In: 35th Southeastern Symposium on
System Theory, pp. 232–236 (2003)

13. Maxwell, K.D., Van Wassenhove, L., Dutta, S.: Software development productivity of
European space, military, and industrial applications. IEEE Transactions on Software En-
gineering 22(10), 706–718 (1996)

14. Myrtveit, I., Stensrud, E., Olsson, U.H.: Analyzing data sets with missing data: An empiri-
cal evaluation of imputation methods and likelihood-based methods. IEEE Transactions
Software Engineering 27, 999–1013 (2001)

15. Ochs, M., Pfahl, D., Chrobok-Diening, G., Nothhelfer-Kolb, B.: A Method for efficient
measurement-based COTS Assessment & Selection – method description and evaluation
results. In: 7th International Software Metrics Symposium (2001)

16. Robnik-Sikonja, M., Kononenko, I.: Theoretical and Empirical Analysis of ReliefF and
RRreliefF. The Machine Learning Journal 53, 23–69 (2003)

17. Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1990)
18. Schillinger, D.: Entwicklung eines simulationsfähigen COTS Assessment und Selection

Tools auf Basis eines für Software adequaten hierarchischen MCDM Meta Modells. Ms
Thesis, Dept. of Computer Science, TU Kaiserslautern (Supervisors): Prof. Dr. D. Rom-
bach, Michael Ochs, Kaiserslautern, Germany (2006)

19. Shepperd, M., Schofield, C.: Estimating Software Project Effort Using Analogies. IEEE
Transactions on Software Engineering 23(12), 736–743 (1997)

20. Sheskin, D.J., Sheskin, D.: Handbook of Parametric and Nonparametric Statistical Proce-
dures, 2nd edn. Chapman & Hall/CRC (2000)

21. Spector, P.: Summated Rating Scale Construction. Sage Publications, Thousand Oaks
(1992)

22. Subramanian, G.H., Breslawski, S.: Dimensionality reduction in software development ef-
fort estimation. Journal of Systems and Software 21(2), 187–196 (1993)

23. The Standish Group. CHAOS Chronicles. West Yarmouth, MA (2003)

www.manaraa.com

 An Integrated Approach for Identifying Relevant Factors 237

24. Trendowicz, A., Heidrich, J., Münch, J., Ishigai, Y., Yokoyama, K., Kikuchi, N.: Devel-
opment of a Hybrid Cost Estimation Model in an Iterative Manner. In: 28th International
Conference on Software Engineering, Shanghai, China, pp. 331–340 (2006)

25. Vincke, P.: Multicriteria Decision-aid. John Wiley & Sons, Chichester (1992)
26. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd

edn. Morgan Kaufmann, San Francisco (2005)
27. Trendowicz, A.: Factors Influencing Software Development Productivity - State of the Art

and Industrial Experiences. Report no. 008.07/E. Fraunhofer IESE, Kaiserslautern, Ger-
many (2007)

www.manaraa.com

A Framework for QoS Contract Negotiation in

Component-Based Applications

Mesfin Mulugeta and Alexander Schill

Institute for System Architecture,
Dresden University of Technology, Germany
{mulugeta,schill}@rn.inf.tu-dresden.de

Abstract. The support of QoS properties in component-based software
requires the run-time selection of appropriate concrete QoS contracts
at the ports of the interacting components. Such a selection process is
called QoS contract negotiation. This paper discusses the architecture of
a QoS contract negotiation framework and how it is implemented in our
prototype. The framework can be integrated in a component container
and act as a run-time support environment when QoS contracts are ne-
gotiated under different application scenarios. Our approach is based on:
(i) the notion that the required and provided QoS properties as well as
resource demands are specified at the component level; and (ii) that QoS
contract negotiation is modeled as a constraint solving problem.

1 Introduction

Component-Based Software Engineering (CBSE) allows the composition of com-
plex systems and applications out of well defined parts (components). In today’s
mature component models (e.g. EJB and Microsoft’s .NET), components are
specified with syntactic contracts that provide information about which meth-
ods are available and limited non-functional attributes like transaction proper-
ties. This underspecifies the components and limits their suitability and reuse
to a specific area of application and environment. In [2], component contracts
have been identified in four different levels: syntactic, behavioral, synchroniza-
tion, and QoS. The explicit consideration of component QoS contracts aims at
simplifying the development of component-based software with non-functional
requirements like QoS, but it is also a challenging task.

For applications in which the consideration of non-functional properties
(NFPs) is essential (e.g. Video-on-Demand), a component-based solution de-
mands the appropriate composition of the QoS contracts specified at the different
ports of the collaborating components. The ports must be properly connected
so that the QoS level required by one must be matched by the QoS level pro-
vided by the other. This matching requires the selection of appropriate QoS
contracts at each port. Generally, QoS contracts of components depend on run-
time resources (e.g. network bandwidth, CPU time) or quality attributes to be
established dynamically. QoS contract negotiation involves the run-time selection
of appropriate concrete QoS contracts specified at the ports of the interacting
components.

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 238–251, 2008.
c© IFIP International Federation for Information Processing 2008

www.manaraa.com

A Framework for QoS Contract Negotiation 239

In [9], we presented how QoS contract negotiation can be formulated as a
constraint solving problem and proposed two-phased heuristic algorithms in a
single-client - single-server and multiple-clients scenarios. This paper focuses
on a conceptual negotiation framework that can be integrated in a component
container to act as a run-time support environment when QoS contracts are nego-
tiated under different application scenarios. We also discuss details of our proto-
type implementation of the framework. The advantages of having the framework
are the following. Firstly, it can be directly used for various types of applications
as long as similar QoS contract specification schemes are used. Secondly, the
framework can be extended to handle different scenarios either by incorporating
new negotiation algorithms or by including more features with respect to the
basic components of the framework.

The rest of the paper is organized as follows. In section 2 we examine related
work. Section 3 details our QoS contract negotiation framework. Section 4 is
devoted to the discussion of how we have implemented the proposed framework
by demonstrating the ideas based on an example application scenario. The paper
closes with a summary and outlook to future work.

2 Related Work

The work in [4] offers basic QoS negotiation mechanisms in only a single con-
tainer. It hasn’t pursued the case of distributed applications where components
are deployed in multiple containers. In [11] QoS contract negotiation is applied
when two components are explicitly connected via their ports. In the negotia-
tion, the client component contacts the server component by providing its re-
quirement; the server responds with a list of concrete contract offers; and the
client finally decides and chooses one of the offers. This approach covers only
the protocol aspect of the negotiation process. It hasn’t pursued the decision
making aspects of the negotiation.

In [8] a model is described where a component provides a set of interrelated
services to other components. These components are QoS-aware and are capable
of engaging in QoS negotiations with other components of a distributed ap-
plication. The paper attempts to create a framework for software components
that are capable of negotiating QoS goals in a dynamic fashion using analytic
performance models. The QoS negotiation between two components occurs by
taking performance as a QoS requirement and concurrency level as a means of
negotiation element. Our treatment of QoS negotiation is more generic and gen-
eral, which may be applied for a larger set of problems. Moreover, the container
handles the negotiation between components in our case, which enhances the
reusability of the components. QuA [13] aims at defining an abstract compo-
nent architecture, including the semantics for general QoS specifications. QuA’s
QoS-driven Service Planning has similarities to our concept of QoS contract ne-
gotiation. Complexity issues, however, haven’t been accounted for in the service
planning.

The Quality Objects (QuO) framework offers one of the most advanced con-
cepts and tools to integrate QoS into distributed applications based on CORBA

www.manaraa.com

240 M. Mulugeta and A. Schill

[7]. In QuO, a QoS developer specifies a QoS contract between the client and
object. This contract specifies the QoS that the client desires from the object,
the QoS that the object expects to provide, operating regions indicating possible
measured QoS, and actions to take when the level of QoS changes. Having to
provide the adaptive behavior explicitly in the QoS contract is a burden on the
QoS developer. In our work, we have taken the approach that instead of spec-
ifying the pre-determined adaptive behavior in the QoS contract, we leave the
reasoning on adaptation (or negotiation) to the component containers, which
they would perform based on the specification of the component’s QoS profiles.
One advantage of this approach is that it makes the application development
process easier.

3 Framework Architecture and Interaction

3.1 Architecture

Our framework can be seen as a reusable design that consists of the repre-
sentation of important active components, data entities, and the interaction of
different instances of these to enable QoS contract negotiation. Fig. 1 shows the
conceptual architecture of our framework represented as a UML class diagram.

Negotiator coordinates and performs the contract negotiation on behalf of
the interacting components. In order for Negotiator to decide on the solution
(i.e. selection of appropriate concrete QoS contracts at the ports of components),
it has to make reference to: (i) the QoS specification of all the cooperating com-
ponents, which is assumed to be available declaratively in the form of one or more
QoS profiles, (ii) user’s QoS requirement and preferences, (iii) available resource
conditions, (iv) network and container properties, and (v) policy constraints.
Finally, Negotiator establishes contracts, which will have to be monitored and
enforced by the container. Next, we describe the different building blocks of our
framework.

QoS Profile. Component’s QoS Contracts are specified with one or more QoS
profiles. A component’s QoS contract is distinguished into offered QoS contract
and required QoS contract [10]. We use CQML+ [12][5], an extension of CQML

Fig. 1. Architecture of a QoS Contract Negotiation Framework

www.manaraa.com

A Framework for QoS Contract Negotiation 241

[1], to specify the offered- and required-QoS contract of a component. CQML+

uses the QoS-Profile construct to specify the NFPs (provided and required QoS
contracts) of a component’s implementation in terms of what qualities a compo-
nent requires (through a uses clause) from other components and what qualities
it provides (through a provides clause) to other interacting components, and the
resource demand by the component from the underlying platform (through a re-
source clause). The uses and provides clauses are described by a QoS statement
that constrain a certain quality characteristic in its value range. A simplified
example shown below depicts these elements for a VideoPlayer component that
may be used in video streaming scenarios.

QoSProf i l e aP r o f i l e f o r VideoPlayer {
prov ides frameRate=15, r e s o l u t i o n =352x288 ;
use s frameRate=15, r e s o l u t i o n =352x288 ;
r e sou r c e s cpu=8.9%; networkBandwidth=2.1kbps ; memory=30KB;

}

It is assumed that the component developer specifies the QoS-Profiles after
conducting experiments and measuring the provided quality, required quality,
and the resource demands at the component level.

Connector. Connector is an abstraction of the network and the containers
that exist between interacting components deployed on multiple nodes. A com-
munication channel may have a number of QoS properties. For example, it intro-
duces a delay. The connector properties are used when matching conformance
between provided- and required-QoS contracts of components interacting across
containers.

It is assumed that the values of the connector properties are available to
Negotiator before negotiation starts. Two possible approaches for estimating
the values are: (i) Off-line measurement - the required properties are measured
off-line by applying different input conditions (e.g. throughput) and load con-
ditions in the network and end-systems; and (ii) On-line measurement - the
properties are measured during the application launch and/or at run-time.

User Profile. UserProfile is used to specify the user’s QoS requirements
and preferences. The user’s requirement may be specified for one or more QoS-
dimensions. Additional parameters such as user class need to be defined when
considering, for example, a multiple-clients scenario. UserProfile is assumed to
be constructed by the run-time system after obtaining the user’s request for a
given service. The user might be given the chance to select values of attributes
from one of many templates supplied for the application or specify the attributes
himself.

Resource. Resource is used to store information about the available resources
at the nodes and the end-to-end bandwidth between nodes in which compo-
nents are deployed. Monitoring functions are used to supply data about a node’s
load conditions on CPU, memory, etc. It is assumed that the available re-
sources are monitored at run-time. Changes in available resources might initiate
re-negotiation.

www.manaraa.com

242 M. Mulugeta and A. Schill

Negotiator. A user’s request to get a service is first intercepted by Negotiator
on the client node. The Negotiator at the client and server side exchange infor-
mation about the required service and the user’s profile before the negotiation
begins. Negotiator is responsible for selecting appropriate QoS-Profiles of the
interacting components that should satisfy a number of constraints (e.g. user’s,
resource, etc.). It is also responsible for finding a good solution from a set of pos-
sible solutions. Negotiator creates Contract after successfully performing the
negotiation. For an unsuccessful negotiation, the selection process is repeated
after systematically relaxing the user’s QoS requirement.

In order to accomplish the stated responsibilities, Negotiator relies on our
modeling of the QoS contract negotiation as a Constraint Satisfaction Optimiza-
tion Problem (CSOP) [14]. A CSOP consists of variables whose values are taken
from finite, discrete domains, a set of constraints on their values, and an objec-
tive function. The task in a CSOP is to assign a value to each variable so that all
the constraints are satisfied and a solution that has an optimal value with regard
to the objective function is found. The objective function maps every solution
to a numerical value.

In the above modeling, we take the variables to be the QoS-Profiles to be used
for the collaborating components. The domain of each variable is the set of all
QoS-Profiles specified for a component. The constraints identified are classified
as conformance, user’s, and resource. As an objective function, we use an ap-
plication utility function [6], which is represented by mapping quality points to
real numbers in the range [0, 1] where 0 represents the lowest and 1 the highest
quality.

Contract. The creation of contracts proceeds after the selection of appropriate
concrete QoS-profiles of the interacting components. Contracts may exist be-
tween components deployed in the same or different containers. In the case of a
front-end component, a contract exists between this component and the user. A
simplified abstraction of Contract is given below.

public class Contract {
QoSProf i l e s e l e c t e dQoSPr o f i l eC l i e n t ;
QoSProf i l e s e l e c t edQoSPro f i l e S e rve r ;
Connector se l e c tedConnector
U s e rP r o f i l e u s e rP r o f i l e ;
double con t r ac tVa l i d i t yPe r i od ;
// . . .

} ;

If a contract is established between two components deployed in the same
container, the clauses of the contract contains the QoS offers and needs as well as
the resource demands of the components. That means, the selected QoS-profiles
of the client and server components would be clauses in the contract (in this case,
selectedConnector and userProfile are null). If a contract is established
between components across containers, a selected connector is also part of the
contract. For a contract between a user and the front-end component, a user’s
profile would become part of the contract (selectedQoSProfileClient and
selectedConnector are null in this case). Note that resources required from

www.manaraa.com

A Framework for QoS Contract Negotiation 243

the underlying platform are included in the contract through the QoS-profiles.
Additional parameters such as contract dependencies, etc. also need to be defined
in the contract in order to facilitate contract monitoring and enforcement.

Monitor. After contracts are established, they can be violated for a number of
reasons like a shortage of available resources. Monitor constantly monitors con-
tracts to assure that no contract violations would occur and in case one occurs,
some corrective measures should be taken through contract re-negotiations.

Policy Constraints. As described previously, Negotiator uses a CSOP frame-
work to find good solution. The CSOP framework in turn relies on the specifica-
tion of constraints and a utility function in order to find appropriate solutions.
There are, however, certain behaviors that cannot be captured in utility func-
tions. Such behaviors are modeled as policy constraint, which can be defined as
an explicit representation of the desired behavior of the system during contract
negotiation and re-negotiation. Negotiator can achieve, for instance, different
optimization goals based on varying specifications in the policy constraints. For
e.g., the service provider might want to allocate different percentages of resources
to different user classes (e.g. premium and normal users).

3.2 Interaction

The interaction diagram in Fig. 2 depicts an overall view of the negotiation
process. It is assumed that the application’s components are deployed in client
and server containers. The diagram shows a successful negotiation scenario per-
formed using a centralized approach. The following is demonstrated in Fig. 2.

– A user requests the application for a service by providing the service’s name
(e.g. playing a given movie or performing payment for usage of a particular
operation) together with his/her QoS and preference needs (step 1).

– Intercepting the user’s request, Negotiator at the client’s container con-
structs UserProfile and sends a message to the server container, which
will identify the components that participate to provide the required service
(step 2).

– In steps 3 to 5, the container that is responsible for the negotiation collects
QoS contracts specified for the collaborating components, resource condi-
tions at each node and the network, and policy constraints that may be
imposed by service providers.

– The responsible container performs the negotiation (step 6) in two phases
[9]. In the first phase, negotiation is made on coarse-grained properties
(step 7). When this is successful, negotiation on fine-grained properties con-
tinues (step 8).

– The responsible container creates all contracts. A contract is established
between any two interacting components and between a user and the front-
end component (step 9).

– The client container retrieves relevant contracts from the server container
(step 10). These are contracts between components deployed in the client
container or between components connected across containers.

www.manaraa.com

244 M. Mulugeta and A. Schill

Fig. 2. Interaction between client and server containers (centralized approach)

4 Implementation and Example

4.1 Example

As a proof-of-concept, we have developed a prototype of the framework proposed
in Fig. 1. Our prototype implements all the elements of the framework with
the exception of PolicyConstraints and Monitor. The framework has been
used to negotiate QoS contracts at run-time for a video streaming application
scenario. In the future we plan to extend our implementation to include contract
monitoring and the consideration of policy constraints. The prototype has been
implemented in Java as also demonstrated by the code snippets shown below.

The video streaming application scenario that we used involves a VideoServer
component deployed in a server container and a VideoPlayer component de-
ployed in a client container (Fig. 3). We use the Comquad component model
[5] that supports streams as special interface types and allows to specify non-
functional properties for them. VideoPlayer implements two interfaces: a uses
interface ICompVideo and a provides interface IUnCompVideowhile VideoServer
implements a provides interface ICompVideo. VideoPlayer’s ICompVideo is con-
nected to VideoServer’s ICompVideo to receive video streams for a playback at
the client’s node.

We conducted an experiment to specify the QoS-Profiles of VideoPlayer and
VideoServer. The VideoPlayer component was implemented using Sun’s JMF

www.manaraa.com

A Framework for QoS Contract Negotiation 245

Fig. 3. A video streaming scenario and QoS-profiles of VideoPlayer and VideoServer
implementations

framework and the VideoServer component abstracts the video media file that
has been pre-encoded into many files with differing frame rates, resolutions, pro-
tocols, and coding algorithm. Fig. 3 depicts some of the measured QoS-Profiles
of VideoPlayer and VideoServer, with UDP protocol and mp42 coding. Note
that these QoS-Profiles depend on the content of the video. During the mea-
surements, average bandwidth and CPU percentage time have been considered.
The bandwidth requirement of VideoServer is taken to be the same as that of
VideoPlayer. The measured CPU requirements of VideoServer are too small
(in the range of 0.1%) and hence have been left out from Fig. 3.

4.2 Implementation

Next, we will see how the framework elements are instantiated and how they
interact during the QoS contract negotiation, which is initiated when a user
sends his request to get a service. Our subsequent discussion roughly follows the
sequence diagram in Fig. 2.

For the example in Fig. 3, a user requests to watch a video clip that is
streamed from the video provider to the user. The involved components are
VideoPlayer and VideoServer. A user also sends his QoS requirements from
which UserProfile is constructed. UserProfile is initialized with the user’s
QoS requirement, i.e. frameRate ≥ 12s−1 and resolution = 176 × 144.

www.manaraa.com

246 M. Mulugeta and A. Schill

public class Use rP r o f i l e {
List<QoSStatement> uses ;
// . . .

} ;
5 u s e r P r o f i l e = new Use rP r o f i l e ({ frameRate=12, r e s o l u t i o n =176x144 }) ;

The other element from the framework that needs to be instantiated before the
negotiation is started is Resource. For the example in Fig. 3, three instances of
Resource are used as illustrated below. Let’s assume that the available resources
at the client and server nodes as well as the end-to-end network bandwidth are
as indicated below.

public class Resource {
double cpu ; // in percentage
double memory ; // in KB
double networkBandwidth ; // in kbps

10 // . . .
} ;
c l i e n tRe sou r c e s = new Resource (80 , 150 , null) ;
s e rv e rRe sou r c e s = new Resource (50 , 200 , null) ;
endToEndBandwidth = new Resource (null , null , 1 000) ;

For the video streaming example, the QoS contracts are specified with multiple
QoS profiles as shown in Fig. 3. A QoS-Profile for VideoPlayer is, for example,
represented as:

15 QoSPro f i l e aP r o f i l e for VideoPlayer {
prov ides frameRate=15, r e s o l u t i o n =352x288 ;
use s frameRate=15, r e s o l u t i o n =352x288 ;
r e sou r c e s cpu=8.9%; networkBandwidth=2.1kbps ; memory=30KB;

}

We used a data structure called ComponentMeta to store the QoS-Profiles
of each component (i.e. a component’s meta data) as shown below. Additional
variables are also needed to be defined. tempSelectedProfile holds temporarily
selected profiles during the negotiation process while selectedProfile stores
the selected profile after the negotiation is concluded. currentProfilePos indi-
cates the position of the temporarily selected profile in the array of QoS profiles,
which are stored from low to high quality. Although not shown in the code snip-
pet below, ComponentMeta defines, among others, the Set and Get functions for
the variables it defines.
20 public class ComponentMeta {

List<QoSProf i le> p r o f i l e s = null ;
QoSProf i l e s e l e c t e d P r o f i l e = null ;
QoSProf i l e t empSe l e c t edPro f i l e = null ;
int cu r r en tPro f i l ePos =0;

25 // . . .
} ;
ComponentMeta c [] = new ComponentMeta [N] ;
enum CG {On Client , On Server , Across Conta iner s } // component ’ s group

ComponentMeta is instantiated for each cooperating component. It is assumed
that profiles in ComponentMeta are populated with values after parsing the
QoS specification that is declaratively available as an XML file to the run-time
system. CG (Line 28) is used to identify whether a component is deployed on
the client, server, or connected across containers.

www.manaraa.com

A Framework for QoS Contract Negotiation 247

An instance of Connector is required during the negotiation when components
are deployed in distributed nodes. The following code snippet assumes that only
a delay property is specified.

public class Connector {
30 List<QoSStatement> pr op e r t i e s = new ArrayList<QoSStatement >() ;

// . . .
} ;
connector = new Connector ({ de lay =0.001}) ;

Negotiator uses instances of c[i], userProfile, connector, client
Resource, serverResource, and endToEndBandwidth described above when
performing the negotiation. Additional variables are also required for the par-
ticular algorithms used in the negotiation.

public class Negot iator {
35 ComponentMeta c [] = null ;

Resource c l i en tRe sou r c e s = null ;
Resource s e rv e rRe sou r c e s = null ;
Resource endToEndBandwidth = null ;
U s e rP r o f i l e u s e rP r o f i l e = null ;

40 Connector connector = null ;
U s e rP r o f i l e boundProf i l e = null ; // i n i t i a l i z e d to user ’ s QoS
requirement
Contract c on t rac t s [] = null ;
// . . .

45 void GetUserPro f i l e () {// ge t s data for u se rPro f i l e }
void GetAvai lab leResources () {// ge t s data for the var ious
r e sou r c e s }
void GetQoSContracts () {// ge t s data for c [i] . p r o f i l e s }
boolean FineGra inedNegot iat ion () {//performs f ine grained

50 nego t i a t i on }
} ;

FineGrainedNegotiation() uses the standard branch and bound (B&B) [14]
technique to find a solution for a problem modeled with a CSOP. To apply
B&B to our problem, we need to define policies concerning selection of the next
variable and selection of the next value. We must also specify the objective
and heuristic functions. In our implementation, the variables (QoS-profiles to
be used by each component) are ordered for assignment by topologically sorting
the network of cooperating components. The assignment starts from the minimal
element (i.e. the front-end component, for e.g. VideoPlayer in Fig. 3) and from
there continues to the connected components, and so on. The possible values of
each variable, i.e. the QoS-profiles specified for each component, must be ordered
from lower to higher quality.

The heuristic function, hValue, maps every partial labeling (assignment) to
a numerical value and this value is used to decide whether extending a partial
labeling to include a new label would result in a “better” solution. At any point
during the assignment of values to variables, the QoS property of the partially
completed solution can be taken as the provided QoS contract of the front-
end component. Hence, hValue (Line 53) can be calculated based on the utility
function by taking the QoS points in the provided-QoS contract of the front-end
component. Because of the ordering strategy of variables we followed, hValue
needs to be computed only at the beginning of each iteration, that is, when the

www.manaraa.com

248 M. Mulugeta and A. Schill

front-end component is assigned a new value (Line 52). If the new assignment
to the front-end component violates the user’s constraint, the choice is retracted
and the sub-tree under the particular assignment will be pruned. The process
will then re-start with a new assignment.

boolean FineGrainedNegot iat ion ()
50 {

i f (ConformanceCheck () == fa l se) return fa l se ;
for (int i=c [0] . GetCurrentProf i l ePos () ; i<c [0] . p r o f i l e s . s i z e () ; i++) {

i f (hValue (c [0] . p r o f i l e s . get (i) . p rov ides)>hValue (boundPro f i l e . uses)){
c [0] . SetTempSelectedQoSProf i le (components [0] . p r o f i l e s . get (i)) ;

55 c [0] . Se tCurrentPro f i l ePos (i +1);
i f (F indAppropr i a t ePro f i l e s ()) {

for (int k=0; k<components . l ength ; k++) {
c [k] . S e tSe l e c t edQoSPro f i l e (c [k] . GetTempSelectedQoSProfi le ()) ;

// change bound with the new value
60 boundPro f i l e = new Use rP ro f i l e () ;

boundPro f i l e . uses = c [0] . GetSe lectedQoSPro f i l e () . prov ides ;
} else break ; // break i s a termination condi t ion

}
}

65 }

ConformanceCheck() (Line 51) performs conformance consistency check to
every connected pair of components: (Ci, Cj) where Ci is the parent of Cj . It
removes QoS-Profiles from the domain of Ci for which no conformant profiles
have been specified in Cj . It returns false if there cannot be conformance between
at least two connected components.

int FindApprop r i a t ePro f i l e s ()
{

FindConformantProf i les (CG. On Client) ;
i f (CheckResourceConstraints (CG. On Client)) {

70 FindConformantProf i l es (CG. Across Contaners \CG. On Client) ;
i f (CheckResourceConstraints (CG. Across Contaners)) {

FindConformantProf i l es (CG. On Server\CG. Across Contaners) ;
i f (CheckResourceConstraints (CG. On Server))

return 1 ; // su c c e s s f u l
75 else return 0 ;

} else return 0 ;
} else return 0 ;

}

FindConformantProfiles() (Line 79) finds QoS-profiles, which are confor-
mant to one another for all the components specified in the input argument.
At each iteration this function improves the solution by one step based on the
specified QoS-profiles. IsMatching() (Line 92) checks the conformance between
two interacting components. Conformance [3] exists between two QoS-profiles
of interacting components when the server’s provided-QoS contract conforms to
the client’s required-QoS contract. If the interacting components are on differ-
ent containers (as identified by AreOnDifferentNodes() (Line 90)), the con-
nector properties are required during conformance check. A component may
belong to two groups in CG (Line 28). For example, a component deployed on
the client container and that also communicates across containers belongs to
On Client and Across Containers. The notation \ in (Lines 70,72) is read as
“less”. CheckResourceConstraint() (Lines 69,71,73) returns true when there
are enough resources for the current selection.

www.manaraa.com

A Framework for QoS Contract Negotiation 249

void FindConformantProf i l es (CG componentGroup)
80 {

int lowerIndex = GetLowerIndex (componentGroup) ;
int higherIndex = GetHigherIndex (componentGroup) ;
i f (lowerIndex==0)

int s t a r t i ng Index = lowerIndex +1; // as the p r o f i l e of the
85 // front−end component has been already s e l e c t e d

else
int s t a r t i ng Index = lowerIndex ;

for (int j=s ta r t i ng Index ; j<=higherIndex ; j++) {
Connector tempConn = null ;

90 i f (AreOnDifferentNodes (c [j −1] , c [j])) tempConn = connector ;
for (i=c [j] . GetCurrentProf i l ePos () ; i<c [j] . p r o f i l e s . s i z e () ; i++) {

i f (IsMatching (c [j −1] . GetTempSelectedQoSProfi le () . uses ,
c [j] . p r o f i l e s . get (i) . provides , tempConn)) {

c [j] . SetTempSelectedQoSProf i le (c [j] . p r o f i l e s . get (i)) ;
95 c [j] . Se tCurrentPro f i l ePos (i) ; break ;

}
}

}
}

Let’s next see the outcome of a negotiation for the example depicted in
Fig. 3. Suppose the various input conditions are:

– user’s QoS requirement: frameRate > 12fps, resolution = 176 × 144; reso-
lution is preferred over frame rate,

– resource availability: at the client’s node, CPU=80%, memory=150KB; at
the server’s node, CPU=50%, memory=200KB; and the end-to-end band-
width is 1Mbps,

– QoS contracts of the components are as given in Fig. 3.

As the first solution, FineGrainedNegotiation() selects the 5th QoS profiles
of VideoPlayer and VideoServer, i.e. the ones with the offered QoS contract
of 176 × 144, 15fps. Further iterations improve the solution and ultimately the
6th QoS-profiles of VideoPlayer and VideoServer are selected. The next step
is to establish contracts between VideoPlayer and VideoServer and between
VideoPlayer and User. These contracts will then be monitored and enforced by
the run-time system.

4.3 Experiences

In the various application scenarios we studied, we had to conduct an experi-
ment to specify the QoS contracts of components. We used these data to check
the validity of our approach and its prototype implementation. In our prototype
we simulated different behaviors concerning: (i) user’s QoS requirements and
preferences, (ii) resource availability conditions concerning the client, server,
and network bandwidth, and (iii) the specified QoS-Profiles of the collaborating
components. Under various conditions, the outcome of the negotiation gives a
solution that has the highest utility as far as the most preferred QoS dimension
is concerned. The run-time complexity of the negotiation algorithm is O(nd2)
where n is the total number of cooperating components and d is the number

www.manaraa.com

250 M. Mulugeta and A. Schill

of QoS-Profiles specified for each component. Such a complexity is achieved by
assuming that the cooperating components form a tree so as to achieve a non-
backtracking solution (Lines 68-77).

It is to be noted that our entire approach extensively depends on the QoS-
Profiles of the collaborating components. The component developer specifies the
QoS-Profiles after conducting experiments and measuring the provided quality,
required quality and the resource demand at the component level. Given the
same application, constituting components, and same environment, the outcome
of the QoS contract negotiation can depend on the specified QoS-Profiles. One
of the drawbacks of this is that the solution obtained might not be the optimal
one. In order to overcome such a discrepancy, there must be some standard way
of specifying QoS contracts, which might be done by either using measurements
or analytical means.

5 Conclusions and Outlook

We presented a QoS contract negotiation framework that can be integrated in a
component container using the interceptor pattern, which enables adding cross-
cutting concerns like contract negotiation. The framework acts as a run-time
support environment when QoS contracts are negotiated in various applications.
As a proof-of-concept we have developed a prototype of the proposed frame-
work. This paper discussed the implementation details of the prototype. We
also illustrated how the framework can be applied to perform negotiation in a
componentized video streaming example application. In the future we plan to
extend our implementation to include contract monitoring and the consideration
of policy constraints.

References

1. Aagedal, J.Ø.: Quality of Service Support in Development of Distributed Systems.
PhD thesis, University of Oslo (2001)

2. Beugnard, A., Jézéquel, J.-M., Plouzeau, N., Watkins, D.: Making components
contract aware. IEEE Computer 32(7), 38–45 (1999)

3. Frolund, S., Koistinen, J.: Quality-of-Service specification in distributed object
systems. IOP/BCS Distributed Systems Engineering Journal (December 1998)

4. Göbel, S., Pohl, C., Aigner, R., Pohlack, M., Röttger, S., Zschaler, S.: The
COMQUAD component container architecture and contract negotiation. Technical
Report TUD-FI04-04, Technische Universität Dresden (April 2004)

5. Göbel, S., Pohl, C., Röttger, S., Zschaler, S.: The COMQUAD Component Model—
Enabling Dynamic Selection of Implementations by Weaving Non-functional As-
pects. In: 3rd International Conference on Aspect-Oriented Software Development
(AOSD 2004), Lancaster, UK, March 22–26 (2004)

6. Lee, C., Lehoczky, J., Rajkumar, R., Siewiorek, D.P.: On quality of service opti-
mization with discrete qos options. In: IEEE Real Time Technology and Applica-
tions Symposium, p. 276 (1999)

www.manaraa.com

A Framework for QoS Contract Negotiation 251

7. Loyall, J., Schantz, R., Zinky, J., Bakken, D.: Specifying and measuring quality
of service in distributed object systems. In: Proc. 1st Int’l Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC 1998), Kyoto, Japan (April
1998)

8. Menascé, D.A., Ruan, H., Gomaa, H.: A framework for qos-aware software compo-
nents. In: The fourth international workshop on Software and performance, Red-
wood Shores, CA, USA, pp. 186–196 (2004)

9. Mulugeta, M., Schill, A.: An approach for QoS contract negotiation in distrib-
uted component-based software. In: Schmidt, H.W., Crnković, I., Heineman, G.T.,
Stafford, J.A. (eds.) CBSE 2007. LNCS, vol. 4608. Springer, Heidelberg (2007)

10. Object Management Group. UML profile for modeling quality of service and
fault tolerance characteristics and mechanisms, v1.0. OMG Document (May 2006),
http://www.omg.org/docs/formal/06-05-02.pdf

11. Ritter, T., Born, M., Unterschutz, T., Weis, T.: A QoS metamodel and its re-
alization in a CORBA component infrastructure. In: Proceedings of the Hawaii
International Conference on System Sciences (2003)

12. Röttger, S., Zschaler, S.: CQML+: Enhancements to CQML. In: Bruel, J.-M. (ed.)
Proc. 1st Int’l Workshop on Quality of Service in Component-Based Software En-
gineering, Toulouse, France, pp. 43–56. Cépaduès-Éditions (June 2003)

13. Staehli, R., Eliassen, F., Amundsen, S.: Designing adaptive middleware for reuse.
In: ARM 2004: Proceedings of the 3rd workshop on Adaptive and reflective mid-
dleware, pp. 189–194. ACM Press, New York (2004)

14. Tsang, E.P.K.: Foundations of Constraint Satisfaction. Academic Press, London
(1993)

http://www.omg.org/docs/formal/06-05-02.pdf

www.manaraa.com

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 252–266, 2008.
© IFIP International Federation for Information Processing 2008

A Case Study on the Impact of Refactoring
on Quality and Productivity in an Agile Team

Raimund Moser1, Pekka Abrahamsson2, Witold Pedrycz3, Alberto Sillitti1,
and Giancarlo Succi1

1 Free University of Bolzano-Bozen, Italy
{rmoser,asillitti,gsucci}@unibz.it

2 VTT Electronics, Oulu, Finland
pekka.abrahamsson@vtt.fi

3 University of Alberta, Canada
pedrycz@ee.ualberta.ca

Abstract. Refactoring is a hot and controversial issue. Supporters claim that it
helps increasing the quality of the code, making it easier to understand, modify
and maintain. Moreover, there are also claims that refactoring yields higher de-
velopment productivity – however, there is only limited empirical evidence of
such assumption. A case study has been conducted to assess the impact of
refactoring in a close-to industrial environment. Results indicate that refactoring
not only increases aspects of software quality, but also improves productivity.
Our findings are applicable to small teams working in similar, highly volatile
domains (ours is application development for mobile devices). However, addi-
tional research is needed to ensure that this is indeed true and to generalize it to
other contexts.

Keywords: Refactoring, Software process, Methodologies, Software metrics.

1 Introduction

Fowler defines refactoring as “a change made to the internal structure of software to
make it easier to understand and cheaper to modify without changing its observable
behavior” [17]. In Agile Methods refactoring is an integral part of the development
process; it is adopted to improve continuously the structure and understandability of
source code during development. In the agile community it is widely accepted that
refactoring contributes to confine the complexity of source code and has a positive
impact on the understandability and maintainability of a software system: frequently
refactored code is believed to be easier to understand, correct and adjust to new
requirements.

A growing number of studies address the relationship between refactoring and the
internal structure of source code and its impact on program understanding, software
quality, and the evolution of a software design: an excellent overview is given in [25].
Most of these studies focus on the following issues:

• Impact of refactoring on the structure of the source code [6]
• Identification of code smells to locate possible refactorings [7], [15], [28], [32]

www.manaraa.com

A Case Study on the Impact of Refactoring on Quality and Productivity 253

• In reverse engineering, how refactoring can reconstruct the overall design of
existing systems [12] and improve the quality of legacy code [26]

Mens et al. [25] define and discuss different refactoring activities related to the is-
sues mentioned above: In this research we focus on one particular topic, namely the
assessment of the effect of refactoring on some quality characteristics that depend or
have an impact on software maintainability both from the point of view of the soft-
ware product and the software process [14]. Only few empirical studies analyze the
impact of refactoring on code quality: Demeyer [13] analyzes whether refactoring has
a negative impact on program performance; Bois and Mens [6] develop a framework
for analyzing the impact of refactoring on internal quality metrics, but they do not
provide any experimental validation in an industrial environment. Stroulia and Ka-
poor [33] perform a case study in an academic environment, where it is shown that
size and coupling metrics of a software system decrease after refactoring. Bois et al.
[7] propose refactoring guidelines for enhancing cohesion and coupling metrics and
obtain promising results by applying them on an open source project. Simon et al.
[32] follow a similar strategy. Sahraoui et al. [29] use quality estimation models for
analyzing whether some object-oriented metrics can be used for detecting situations
where a particular transformation of source code (refactoring) can be applied to im-
prove the quality of a software system. Again, they do not validate their approach
within an industrial case study or experiment. Yu et al. [35] use a modeling frame-
work for non-functional requirements and relate refactorings to soft goals. They
perform a case study, which shows that refactoring can be measured as the transfor-
mation on the state of program in the quality space. Tahvildari and Kontogiannis [34]
investigate the use of metrics for detecting potential design flaws and for suggesting
potentially useful transformations for correcting them. Finally, Kataoka et al. [20]
provide a quantitative evaluation of maintainability enhancement by refactoring. For
the purpose of validation they analyze a project developed by a single developer, but
do not provide any information on the development environment. Thus, it is question-
able if their findings are valid in a different context where development teams follow
a structured process and use common software engineering practices for knowledge
sharing.

In the context of Agile Methods there are several claims that refactoring provides
four significant advantages [17]:

• Refactoring helps developers to program faster
• Refactoring improves the design of the software
• Refactoring makes software easier to understand
• Refactoring helps developers to find bugs

The first advantage relates to productivity and is probably the most important for
managers who are mainly concerned with time to market. Nevertheless, there is al-
most no solid, empirical, and quantitative evidence of such claim, apart from a small
case study, where it appeared that refactoring decreased the long-term productivity
[1]. Recently Schofield et al. [30] performed a return on investment analysis on an
open source project in order to estimate savings in effort, given a specific (beneficial)
code change. They found that, most of the time, refactorings have beneficial impacts
on maintenance activities, and thus are motivated from an economic perspective.

www.manaraa.com

254 R. Moser et al.

The last three advantages of refactoring refer to software quality attributes. We
have previously mentioned some studies that analyze the impact of code restructuring
induced by refactorings on internal product metrics, which are typically used to meas-
ure quality attributes, such as complexity, coupling and cohesion. Such early results
are promising, still there is a need for (a) additional empirical validation to better
understand and generalize the findings, and (b) a clear linkage to external quality
attributes, such as number of defects.

Altogether, the real advantages of refactoring are still to be fully assessed [24]. In
particular, it is not yet clear whether refactoring increases developer productivity and
the extent to which refactoring improves software quality. As regards quality, it ap-
pears to be a convergence of positive remarks, still, without solid quantification.
Needless to say, a major impediment for a deeper understanding of these issues is a
lack of empirical investigation, based on hard data coming from industry.

The paper is organized as follows. In Section 2, we describe our research method-
ology and the experimental set-up. In Section 3, we present a case study and discuss
the results obtained from it; in Section 4, we discuss the limitations of our approach.
Finally, conclusions and implications of the investigation are drawn in Section 5.

2 Research Methodology and Experimental Set-Up

In order to investigate a research problem we have to define (a) the objectives and
hypotheses of the study, (b) the variables along with the metrics used to measure
them, (c) the instruments used in the experiment and the data collection procedure,
and (d) the data analysis method. We will discuss each of these points below. The
results of the case study and threats to the validity of the experiment are presented in
subsequent sections.

2.1 Research Hypotheses

Software is naturally subjected to continuing change, increasing size and complexity
and therefore declining maintainability. In particular, in the one-way traditional de-
velopment process, internal code measures tend to show a continuous increase in
complexity and coupling and a decrease in cohesion as new features are added to a
software system. This natural process of code corrosion is even more manifest as time
goes by [21]. More complex and intertwined code is more difficult to manage and
maintain; therefore, we expect that also development productivity will show a de-
creasing trend over time. In contrast, in XP-like processes, thanks to its agile practices
(in particular constant refactoring, unit testing, frequent releases), the complexity of
the code and the effort for adding new functionalities is claimed to remain about
constant or to grow very slowly [3]. Unfortunately, due to high costs of industrial
software development we are not able to run a formal experiment with an industrial
partner where we could analyze two similar projects, one developed using XP prac-
tices and one without, and compare directly the evolution of respective quality and
productivity metrics.

www.manaraa.com

A Case Study on the Impact of Refactoring on Quality and Productivity 255

We have to content ourselves with a simpler approach: We focus only on one XP
practice, namely refactoring, and compare changes of productivity before and after
explicit refactorings and use such comparison as criteria for assessing the impact of
refactoring on it. As regards quality and maintainability, we determine the changes of
several design metrics after an explicit refactoring has been applied and compare
changes with the average daily changes per iteration. If they are significantly different
(improved) we then conclude that refactoring has a positive effect on code quality
and, as a consequence, on software maintainability. We define in section 2.2 what we
intend by explicit refactorings in the context of our study.

Framed in terms of research questions, we aim at presenting evidence that will al-
low us to reject (or accept) the following two null hypotheses:

• H0
A: after an explicit refactoring the average productivity for the consecutive

development iteration is the same as for the previous iteration.
• H0

B: the considered internal quality metrics (complexity, coupling, and cohe-
sion) do not show any improvement after an explicit refactoring with respect
to their average daily changes.

In order to obtain more reliable and smoother results we do not simply compare the
changes of productivity and quality metrics before and after the application of a refac-
toring. Such changes could happen by chance or because of some other factors we do
not control within this case study (for example mood of developers, work on particu-
lar part of the code, problems with tools, other XP practices). To minimize the influ-
ence of random and uncontrolled changes we compare average productivities between
development iterations (the one in which an explicit refactoring has been applied with
the following iteration). Also for the quality metrics we compute their average daily
changes and compare them with the changes induced by an explicit refactoring.

2.2 Explicit Refactorings, Productivity, and Quality

In more traditional development processes, refactoring is present in ordinary mainte-
nance tasks or extraordinary maintenance projects, in order to improve software main-
tainability [20]. The context of our analysis however is an agile development process,
namely a tailored version of Extreme Programming [2]; in such environment refactor-
ing is an integral part of software development. Kent Beck illustrates the principle of
agile development with the two hats metaphor: One is adding new functionality (cod-
ing) and the other is refactoring. The developer should swap frequently between these
two hats but wear only one at a time. Therefore, we assume that developers apply
small refactorings like Extract Method, Rename, Simplify Conditional, Move
Method/Field, and so on [17] throughout development – without even documenting it.
We believe that all these small refactorings improve slightly the quality of the code
and increase overall development productivity compared to a development process,
which does not use the practice of refactoring.

However, due to the lack of empirical data (of two comparable software projects, one
developed using an agile and one using a traditional method) such comparison is out of
scope of this research. Instead, we analyze the effect of explicit refactorings on produc-
tivity and quality within the same project. Explicit refactoring means that developers

www.manaraa.com

256 R. Moser et al.

wrote explicitly a user story for refactoring tasks and that the implementation of such
user story took a considerable amount of time – in our case even several hours.

For the time being, we do not identify different kinds of refactorings and analyze
separately the impact of each type of refactoring on productivity or quality. After
having defined what we intend by explicit refactoring we have to define the other
variables of interest for this research, namely development productivity and metrics
for software quality and in particular maintainability.

Lots of work has been done on how to measure developers’ productivity [16].
However, no definitive measure has been found and perhaps such definite measure
does not exist. A very simple measure of productivity is the ratio of lines of code
(LOC) produced and effort in hours spent in producing them:

productivity = LOC

Effort

In this research we use this equation because of its simplicity and expressiveness.

In addition, programmers are all working in good faith – they volunteered for this
experiment, the effort spent in activities other than coding has been closely monitored
and evenly distributed, code reuse has been closely scrutinized also via the CVS re-
pository, and no code generators have been used.

Software quality is a composite property of many internal and external software at-
tributes. There has been a lot of discussion on the meaning of software quality [23],
[5]. It is now commonly agreed [16] that software quality is a property defined by
several small-scaled and directly measurable attributes. In this research we use com-
plexity, coupling, and cohesion metrics, as defined by Chidamber and Kemerer (CK)
[10]; such measures are widely accepted both by practitioners and researchers and
validated by several previous studies [4], [9]. In addition, such measures are easy to
collect and to understand, a precondition for their effective use [19].

Software maintainability is related both to software quality (it is considered as a
quality factor) and cost, as good maintainability of software reduces significantly
maintainance effort [11]. An XP project is constantly in the state of maintainance [3],
therefore, besides quality measures also evolution of development productivity is a
good indicator for its maintainability. The CK metrics include measures for complex-
ity (WMC) and coupling (CBO) of object-oriented systems: Both of them are related
to software maintainability as an increase of software complexity and coupling dete-
riorates its understandability [18].

2.3 Data Collection

The software project we analyze was developed using an agile, XP-like methodology
tailored by Abrahamsson et al. [2]. Therefore, data collection had to be (a) non-
invasive to preserve the agile nature of the project itself [27], and (b) accurate and
reliable for doing meaningful statistics.

In order to achieve these two goals we use the PROM tool [31] for collecting prod-
uct and effort metrics. PROM is a fully automated measurement framework for soft-
ware engineering processes and products. Source code metrics are extracted daily
from the source code management system employed by the company. PROM enables

www.manaraa.com

A Case Study on the Impact of Refactoring on Quality and Productivity 257

the automatic collection of the effort associated with different tasks such as reading
documents, browsing the web and coding. In particular, a plug-in for the IDE in place
collects the time spent by developers for coding activities for individual methods and
classes. Effort data for coding is collected as soon as the developer enters the cursor
in the source code editor of the IDE and ends if the editor is off focus, the IDE is
closed or the screensaver is activated. Moreover, PROM allows the user to specify if
one or two programmers are sitting in front of a machine.

The notion of effort adopted in this context is strongly related to only coding ac-
tivities and does not include the time spent discussing about the design/code on a
whiteboard; however in an XP-like process, which itself assigns to coding activities
the highest importance, this measure is a reasonable measure for development effort.
Both source code metrics and effort data are integrated and stored automatically in a
central database, from which we access the data for our analysis.

To collect the product and process metrics listed in Table 1 with the PROM tool,
we adopt the following data collection procedure:

• Every day at midnight the source code metrics are extracted from a CVS re-
pository.

• A plug-in for Eclipse (the IDE used by developers) collects automatically the
time spent for coding on individual classes and methods.

• We identify the days on which explicit refactorings are applied from the user
stories (described in the project plan).

Table 1 provides an overview of the information that come from PROM and is
used in this research.

Table 1. Sample data collected by PROM and aggregated at a system level. All metrics are per
day.

Day LOC
CK
metrics

Effort
(hour)

Productivity
(LOC/hour)

22 150 30, 7, 5, 3 4.24 h 35.3

... … …

We aggregate metrics at a system level (we add up all single classes) and compute
their overall changes per day in the case of product metrics and the total time spent
for coding per day in the case of effort. The way we aggregate metrics is a first ap-
proach and could be refined: We could for example identify the classes affected by
refactoring using a technique presented in [12], [30] and use only them for analyzing
changes in quality and productivity. Whether this would change our findings, has to
be assessed in a future analysis.

2.4 Data Analysis Method

Our research design is to some extent a one-factor, repeated-measures design: The
treatment (in our case refactoring) is applied twice to the same subjects. We use

www.manaraa.com

258 R. Moser et al.

box-plots for comparing the means of different populations (before-after refactoring
productivity). In addition we perform a Wilcoxon rank sum test [22], as we cannot
assume a normal distribution and homogeneity of variance of data.

As regards the quality metrics we proceed in the following way: first, we compute
their changes at the end of a day when developers applied an explicit refactoring with
respect to the previous day. Then, we use a Wilcoxon Signed-Rank [22] test to con-
clude whether these changes are lower than the average daily changes per iteration or
not. Our final goal is to disprove the null hypotheses by using the Wilcoxon Signed-
Rank tests to determine (a) if the development productivity is higher after refactoring
than before, and (b) if quality metrics are significantly improved by refactoring with
respect to their average changes.

3 Case Study

In the following section, first we describe the context of the case study; afterwards,
we present and discuss the results of our analysis.

3.1 Context of the Case Study

The object under study is a software project in an agile, close-to-industrial develop-
ment environment (“close-to-industrial” refers to an environment where the develop-
ment team is composed of both professional software engineers and students [2]). The
result is a commercial software product developed at VTT in Oulu, Finland, to moni-
tor applications for mobile, Java enabled devices. The programming language was
Java (version 1.4) and the IDE was Eclipse 3.0. The project was a full business suc-
cess in the sense that it delivered on time and on budget the required product.

Four developers formed the development team. Three developers had an education
equivalent to a BSc and limited industrial experience. The fourth developer was an
experienced industrial software engineer.

The development process followed a tailored version of the Extreme Programming
practices [2], which included all the practices of XP but the “System Metaphor” and
the “On-site Customer”; there was instead a local, on-site manager that met daily with
the group and had daily conversations with the off-site customer. In particular, the
team worked in a collocated environment and used the practice of pair programming.
The project lasted eight weeks and was divided into five iterations, starting with a
1-week iteration, which was followed by three 2-weeks iterations, with the project
concluding in a final 1-week iteration. Throughout the project, mentoring was pro-
vided on XP and other programming issues according to the XP approach. Since the
team was exposed for the first time to an XP-like process, a brief training of target XP
practices was given before the start of the project.

The total development effort per developer was about 192 hours (6 hours per day
for 32 days). Since with PROM we monitored all the interactions of the developer
with different applications, we are able to differentiate between coding and other
activities: About 75% of the total development effort was spent for pure coding activi-
ties inside the IDE while the remaining 25% was spent for other assignments like

www.manaraa.com

A Case Study on the Impact of Refactoring on Quality and Productivity 259

working on text documents, reading and writing emails, browsing the web and similar
tasks. The developed software consists of 30 Java classes and a total of about 1770
Java source code statements (LOC counted as number of semicolons in a Java
program).

During development two user stories have been explicitly written for refactoring
activities: One at the end of iteration two with the title “Refactor Static Classes to
Object Classes” and one at the end of iteration four with the title “Refactor Architec-
ture”. We refer to the implementation of these two user stories as explicit refactor-
ings; we analyze changes of productivity and quality measures before and after their
completion.

3.2 H0
A – Does Productivity Increase After “Explicit Refactorings”?

Figure 1 shows the evolution of the average productivity per iteration over the whole
development period.

Fig. 1. Average development productivity per iteration

The productivity is almost the same in iterations 1, 2, and 4, (about 15
LOC/HOUR) while it is significantly higher in iterations 3 and 5 (more than 22
LOC/HOUR). This distribution is interesting for two reasons: First, productivity does
not show a decreasing trend during software development as we were expecting due
to higher effort for adding new functionality as the system’s complexity and coupling
is growing. Second, whenever developers perform an explicit refactoring – i.e. at the
end of iteration 2 and at the end of iteration 4 – productivity of the following iteration
is significantly higher than average productivity of the remaining iterations. For the
data under scrutiny we can only measure changes of productivity after two explicit
refactorings (treatments). With such small sample size statistical tests are hardly
applicable as significance values are rather meaningless. Instead we prefer to use a
box-plot for visualizing the difference in productivity in the before-after refactoring
situations.

www.manaraa.com

260 R. Moser et al.

Figure 2 shows a box-plot of the average productivity per iteration throughout de-
velopment. Moreover, we draw two dashed lines, one indicating the average produc-
tivity for the iteration following the first explicit refactoring, the other for the iteration
following the second explicit refactoring. We can observe a clear improvement of
productivity for both cases with respect to average productivity.

For the sake of completeness we perform a Wilcoxon rank sum test to compare
productivity after the 2 refactorings with average productivity of the remaining itera-
tions. As expected, given our small sample size, we obtain a p value of 0.2 meaning
that we cannot reject H0

A neither for refactoring 1 nor for refactoring 2. Overall, we
can conclude that the productivity data sustain the claim that refactoring raises devel-
opment productivity in the short-term, thus nullifying to some extent the complexity
naturally added during development. However, this conclusion is more a confirmation
of a suspicion and not a clear affirmation based on statistical inference from experi-
mental data.

In order to consider the overall evolution of productivity throughout development,
we compare the medians of the daily productivity of each iteration using a non-
parametric Kruskal-Wallis test [22]. The result is that they are not statistically differ-
ent from each other. In fact Figure 1 emphasizes that productivity is rather increasing
than declining towards the end of the project.

Fig. 2. Box-plot of average productivity per iteration

Altogether, our findings strongly advocate that refactoring of a software system
raises subsequent development productivity and prevents in a long-term its
deterioration.

3.3 H0
B –– Cohesion, Coupling and Complexity: Does Refactoring Improve

Code Quality?

Findings of prior studies claim that refactoring improves some low-level quality met-
rics like coupling and cohesion measures [7]. In this research we look at the temporal
evolution of the CBO, WMC, RFC, and LCOM metrics and how it is related to refac-
toring. A visual inspection of the evolution of these metrics (Figure 3) evidences that
their changes, from one iteration to the next, tend to decrease starting from the second
iteration (1st explicit refactoring) for the CBO and RFC metrics, and from the third
for the LCOM and WMC metrics. This is a first indication that refactoring could limit

www.manaraa.com

A Case Study on the Impact of Refactoring on Quality and Productivity 261

Table 2. p-values for the one-sided Wilcoxon Signed-Rank test for testing if the population
mean of the median of the daily changes per iteration of CK metrics is higher than the changes
after refactoring

 WMC LCOM CBO RFC
Refactoring1 0.72 0.5 0.03 0.18
Refactoring2 0.03 0.02 0.02 0.02

the overall decrease of cohesion and increase of coupling and complexity metrics that
we expect to occur during software development.

Table 2 gives the p-values (significant values at the 0.05 level are set in bold face)
of the Wilcoxon Signed-Rank test for assessing whether or not the changes of the 4 CK
metrics after the two explicit refactorings are the same with respect to their average
changes: We can see that all of them improve after the second refactoring, since their
changes are significantly lower (they are in fact negative) than the average of their
daily changes. For the first refactoring this is only true for the coupling metric CBO.
The results are not strong enough to reject H0

B for both refactorings, but only for the
second and in part for the first. Still, they provide confidence that with more compre-
hensive experimentation on larger projects it will be possible to significantly prove it.

Visually inspecting the plot (Figure 3) of the changes of LCOM, CBO, RFC and
WMC per iteration, we also notice an interesting phenomenon: After an initial phase
of remarkable growth of these metrics, they start to decrease, most likely thanks to
refactoring. We interpret this as the people gathering a more comprehensive view of
the application to develop, and thus being able to better refactor the system, creating
simpler, less coupled, and more cohesive code. Moreover, by refactoring the system
they acquire a better understanding of the program being developed, which could
explain a boost in productivity (this observation is consistent with the findings of
other researchers [8]). Yet, this is an interpretation based on a visual inspection rather
than on a statistical test: only future research involving larger data samples will be
able to assess its statistical significance and validity.

Fig. 3. Evolution of the average changes of LCOM, CBO, RFC, and WMC per iteration

www.manaraa.com

262 R. Moser et al.

Altogether, this research evidences that there are visual indicators (in part sup-
ported by statistical tests) that refactoring prevents an explosion of complexity and
coupling metrics by driving developers to simpler design and as a consequence less
complex and coupled and easier to maintain code.

4 Threats to Validity

This research aims at assessing the impact of refactoring on development productivity
and software quality measures. The results of this research are particularly interesting
as they come from a case study in a close-to-industry context: A situation, which is
quite rare in software engineering. However, there are a number of threats to con-
struct, internal and external validity of the study that have to be addressed properly.
Those are in particular:

(a) First, the conclusions we draw depend strongly on the definition we give of
productivity and software quality and its validity in industry. We define productivity
as the ratio between source code statements and time spent for coding. Several objec-
tions have been raised against this measure: A malicious developer could artificially
inflate the number of lines of code; only coding is considered ignoring all the other
phases of development – analysis, design, etc; code reuse and automatically generated
code are not taken properly into account; and other. Despite all the criticism, this
equation is by far the most used in industry, as it is very easy to understand and gives
clear and absolute numbers, which are easy to compare and to use in statistical calcu-
lations. Moreover, in the context of XP much emphasis is put on coding activities;
thus, development effort coincides mostly with coding effort. In order to support the
validity of the productivity measure used in this study it would be interesting to run
similar studies using this definition but also a definition based on other parameters,
for instance function points or user stories.

(b) As regarding to internal validity we have to be aware that with a single case
study it is not possible to infer whether or not the observed relation is a causal one.
We are not able to control and manipulate the influence of other confounding factors
such as short release cycles or pair programming. For example, the observed increase
in productivity after explicit refactorings could be explained differently: Maybe in the
iterations following an explicit refactoring developers implemented “easy” user sto-
ries or did not do any refactoring at all (refactoring itself decreases to some extent
productivity as measured in this study). Moreover, even if we were sure that refactor-
ing is the cause for the observed improvements in productivity due to the small sam-
ple size such relation is of low statistical significance. However, confounding factors,
which we identified in the context of this study, are averaged over iterations and
should impact productivity and quality measures equally (i.e. independent of specific
iterations). Therefore, we are confident that the observed effects are due to the explicit
refactorings and that a larger study would provide necessary statistical significance,
which is only suggested by our results.

(c) We do not consider different kinds of refactorings. Such coarse grained analysis
could bias our results: Developers may for example apply only a limited subset of
refactorings – due to their inexperience or other reasons – and in such case we can

www.manaraa.com

A Case Study on the Impact of Refactoring on Quality and Productivity 263

probably not generalize the implications for all other types of refactorings. We plan to
take into account different categories of refactorings in a more refined, future study.

(d) We sum averaged quality metrics and productivity over all classes, whereas
probably only a few of them have been affected by the two explicit refactorings. In
doing so we could misinterpret the real impact of refactoring; we plan in a future
work with a larger sample size to analyze the changes of productivity and code qual-
ity only for the classes that have been involved directly in a refactoring activity.

(e) The subjects of the case study are heterogeneous (three students and one profes-
sional engineer) and use for the first time an XP-like methodology. This could con-
found our findings, as for example students may behave very different from industrial
developers. Moreover, also a learning effect could be visible and for example be the
cause for the evolution of the productivity and quality metrics as shown, respectively,
in Figure 1 and Figure 3. Developers were aware that they are monitored, but did not
know that we measured in particular productivity before and after refactorings; we did
not communicate them the objectives of the study as such knowledge could influence
their behavior leading to higher productivities after refactorings.

(f) As with every case study, it is hard to generalize to other, larger contexts. We
think that our findings are applicable to small teams working in similar, highly vola-
tile domains (ours is application development for mobile devices). However, addi-
tional research is needed to ensure that this is indeed true and to generalize it to other
contexts.

Furthermore, it would be interesting to analyze how much refactoring is “good
enough” to keep productivity high and what kinds of refactorings are important to
improve both productivity and quality.

5 Conclusions

Although agile processes and practices are gaining more importance in the software
industry there is limited solid empirical evidence of their effectiveness. This research
focuses in particular on the practice of refactoring, which is one of the key practices
of Extreme Programming and other Agile Methods.

While the majority of software developers and researchers agree that refactoring
has long-term benefits on the quality of a software product (in particular on program
understanding) there is no such consensus regarding the development productivity.
Available empirical results regarding this issue are very limited and not clear [1]. This
might refrain managers from adopting refactoring, as they might be scared of loosing
resources.

This work contributes to a better understanding of the effects of refactoring both on
code quality – in particular on software maintainability - and development productivity
in a close-to industrial, agile development environment. It provides new empirical,
industrially based evidence that refactoring rather increases than decreases development
productivity and improves quality factors, as measured using common internal quality
attributes – reduces code complexity and coupling; increases cohesion. The implications
on defects are not discussed, as such data are not available. Moreover, we do not

www.manaraa.com

264 R. Moser et al.

contribute in exploring the linkage of refactoring to other external quality attributes.
Clearly, this question has to be addressed in a future study.

As regards productivity, these results are in contradiction with the previous work
of Abrahamsson and Koskela [1]. However, such older work addressed a case that
was too limited to be taken as a reference. For internal quality metrics, our results are
in accordance with the existing literature. Altogether, we believe that our findings are
particularly relevant, as this work is a case study in a close-to-industry environment, a
kind of empirical investigation that is rare for the research problem we discuss here.
Clearly, this is a first work in the area. A real, generalizable assessment of the impli-
cations of refactoring requires several repetitions of studies like this, possibly also
including data on defects.

The findings of this research have major implications for a widespread use of
refactoring, as already mentioned by Beck in his first work on XP [3]. Of course,
refactoring as any other technique is something a developer has to learn. First, man-
agers have to be convinced that refactoring is very valuable for their business; this
research should help them in doing so as it sustains that refactoring – if applied
properly – intrinsically improves code maintainability and increases development
productivity. Afterwards, they have to provide training and support to change their
development process into a new one that includes continuous refactoring.

Case studies in close-to-industry contexts are very rare in software engineering and
this gives us a remarkable confidence on the results that we have obtained. However,
it is important to remember that, formally, such results are only valid in the specific
context of the study. To achieve a high level of confidence of them, it is essential to
replicate such case studies, also in other contexts and using different measures.

Acknowledgments. Special thanks go to development team at VTT, Oulu, Finland,
which has been disposed to install and use the PROM tool for data collection and in
the end, enabled this case study. The authors would also like to acknowledge the
support by the Italian Ministry of Education, University and Research via the FIRB
Project MAPS (http://www.agilexp.org) and the autonomous province of South Tyrol
via the Interreg Project Software District (http://www.caso-synergies.org).

References

1. Abrahamsson, P., Koskela, J.: Extreme programming: Empirical results from a controlled
case study. In: ACM-IEEE International Symposium on Empirical Software Engineering
(ISESE 2004), Redondo Beach CA, USA (2004)

2. Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J., Korkala, M.,
Koskela, J., Kyllönen, P., Salo, O.: Mobile-D: An Agile Approach for Mobile Application
Development. In: Proceedings 19th Annual ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2004, Vancouver, British
Columbia, Canada (2004)

3. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Reading
(2000)

4. Basili, V.R., Briand, L.C., Melo, W.L.A.: Validation of Object-Oriented Design Metrics as
Quality Indicators. IEEE Transactions on Software Engineering 22(10), 267–271 (1996)

www.manaraa.com

A Case Study on the Impact of Refactoring on Quality and Productivity 265

5. Boehm, B.W., Brown, K.J.R., et al.: Characteristics of Software Quality. TRW Series of
Software Technology. North-Holland, Amsterdam (1978)

6. Bois, B.D., Mens, T.: Describing the impact of refactoring on internal program quality. In:
Proceedings of the International Workshop on Evolution of Large-scale Industrial Soft-
ware Applications (ELISA), Amsterdam, The Netherlands (2003)

7. Bois, B.D., Demeyer, S., Verelst, J.: Refactoring – Improving Coupling and Cohesion of
Existing Code. In: Belgian Symposium on Software Restructuring, Gent, Belgium (2005)

8. Bois, B.D., Demeyer, S., Verelst, J.: Does the “Refactor to Understand” Reverse Engineer-
ing Pattern Improve Program Comprehension? In: Proceedings 9th European Conference
on Software Maintenance and Reengineering (CSMR 2005), Manchester, UK, March 21-
23 (2005)

9. Briand, L.C., Wüst, J.: Modeling Development Effort in Object-Oriented Systems Using
Design Properties. IEEE Transactions on Software Engineering 27(11), 963–986 (2001)

10. Chidamber, S., Kemerer, C.F.: A metrics suite for object-oriented design. IEEE Transac-
tions on Software Engineering 20(6), 476–493 (1994)

11. Corbi, T.A.: Program Understanding: Challenge for the 1990s. IBM Systems Jour-
nal 28(2), 294–306 (1989)

12. Demeyer, S., Ducasse, S., Nierstrasz, O.: Finding Refactorings via Change Metrics. In:
Proceedings of the 15th Annual ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2000, Minneapolis, USA (2000)

13. Demeyer, S.: Maintainability versus Performance: What’s the Effect of Introducing Poly-
morphism? Technical report, Lab. on Reeng. Universiteit Antwerpen, Belgium (2002)

14. Van Deursen, A.: Program Comprehension Risks and Opportunities in Extreme Program-
ming. In: Proceedings of the Eighth Working Conference on Reverse Engineering (WCRE
2001), Stuttgart, Germany, October 2-5 (2001)

15. Van Emden, E., Moonen, L.: Java Quality Assurance by Detecting Code Smells. In: Pro-
ceedings of the 9th Working Conference on Reverse Engineering. IEEE Computer Society
Press, Los Alamitos (2002)

16. Fenton, N., Pfleeger, S.L.: Software Metrics A Rigorous & Practical Approach. PWS Pub-
lishing Company, Boston (1997)

17. Fowler, M.: Refactoring Improving the Design of Existing Code. Addison-Wesley, Read-
ing (2000)

18. Henderson-Sellers, B.: Object-Oriented Metrics: Measures of Complexity, p. 62. Prentice-
Hall, Upper Saddle River (1996)

19. Johnson, P.M., Disney, A.M.: Investigating Data Quality Problems in the PSP. In: Pro-
ceedings of Sixth International Symposium on the Foundations of Software Engineering
(SIGSOFT 1998) (1998)

20. Kataoka, Y., Imai, T., Andou, H., Fukaya, T.: A Quantitative Evaluation of Maintainability
Enhancement by Refactoring. In: Proc. Int’l Conf. Software Maintenance, October 2002,
pp. 576–585 (2002)

21. Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, P.E., Turski, W.M.: Metrics and laws of
software evolution-the nineties view. In: Proceedings of the Fourth International Software
Metrics Symposium, November 5-7 (1997)

22. Lehmann, E.L.: Testing Statistical Hypotheses. Springer, New York (1986)
23. McCall, J.A., Richards, P.K., Walters, G.F.: Factors in Software Quality. RADC TR-77-

369, Vols I, II, III, US Rome Air Development Center Reports NTIS AD/A-049 014, 015,
055 (1977)

24. Mens, T., Demeyer, S., Bois, B.D., Stenten, H., van Gorp, P.: Refactoring: Current Re-
search and Future Trends. Electronic Notes in Theoretical Computer Science 82(3) (2003)

www.manaraa.com

266 R. Moser et al.

25. Mens, T., Tourwé, T.A.: Survey of Software Refactoring. IEEE Transactions on Software
Engineering 30(2), 126–139 (2004)

26. Pizka, M.: Straightening spaghetti-code with refactoring? In: Proceedings of the Int. Conf.
on Software Engineering Research and Practice - SERP, Las Vegas, NV, pp. 846–852
(2004)

27. Poppendieck, T., Poppendieck, M.: Lean Software Development: An Agile Toolkit for
Software Development Managers. Addison-Wesley, Reading (2003)

28. Ratzinger, J., Fischer, M., Gall, H.: Improving Evolvability through Refactoring. In: Pro-
ceedings 2nd International Workshop on Mining Software Repositories, MSR 2005, Saint
Louis, Missouri, USA (2005)

29. Sahraoui, H.A., Godin, R., Miceli, T.: Can metrics help to bridge the gap between the im-
provement of oo design quality and its automation? In: Proc. International Conference on
Software Maintenance, pp. 154–162 (October 2000)

30. Schofield, C., Tansey, B., Xing, Z., Stroulia, E.: Digging the Development Dust for Refac-
torings. In: Proceedings of the 14th International Conference on Program Comprehension
(ICPC 2006), Athens, Greece (2006)

31. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Collecting, Integrating and Analyzing Soft-
ware Metrics and Personal Software Process Data. In: Proceedings of the EUROMICRO
2003, Belek-Antalya, Turkey (2003)

32. Simon, F., Steinbruckner, F., Lewerentz, C.: Metrics based refactoring. In: Proc. European
Conf. Software Maintenance and Reengineering, pp. 30–38. IEEE Computer Society
Press, Los Alamitos (2001)

33. Stroulia, E., Kapoor, R.V.: Metrics of Refactoring-based Development: An Experience
Report. In: The 7th International Conference on Object-Oriented Information Systems,
Calgary, AB, Canada, pp. 113–122. Springer, Heidelberg (2001)

34. Tahvildari, L., Kontogiannis, K.A.: Metric-Based Approach to Enhance Design Quality
through Meta-Pattern Transformations. In: Proc. European Conf. Software Maintenance
and Reeng., pp. 183–192 (2003)

35. Yu, Y., Mylopoulos, J., Yu, E., Leite, J.C., Liu, L., D’Hollander, E.H.: Software refactor-
ing guided by multiple soft-goals. In: Proceedings of the 1st workshop on Refactoring:
Achievements, Challenges, and Effects, in conjunction with the 10th WCRE conference
2003, Victoria, Canada, November 13-16, pp. 7–11 (2003)

www.manaraa.com

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 267–278, 2008.
© IFIP International Federation for Information Processing 2008

Modeling of Requirements Tracing

Matthias Heindl1 and Stefan Biffl2

1 Support Center Configuration Management, Siemens Program and Systems Engineering,
Siemens AG Austria, Gudrunstrasse 11, A-1100 Vienna, Austria

Matthias.a.Heindl@siemens.com
2 Institute of Software Technology and Interactive Systems, Vienna University of Technology,

Favoritenstrasse 9/188, A-1040 Vienna, Austria
Stefan.Biffl@tuwien.ac.at

Abstract. Software customers want both sufficient product quality and agile re-
sponse to requirements changes. Formal software requirements tracing helps to
systematically determine the impact of changes and to keep track of develop-
ment artifacts that need to be re-tested when requirements change. However,
full tracing of all requirements on the most detailed level can be very expensive
and time consuming. In the paper an initial “tracing activity model” is intro-
duced along with a framework that allows measuring the expected cost and
benefit of tracing approaches. In a feasibility study a subset of the activities be-
longing to the model has been applied to compare three tracing strategies: agile,
“just in time” tracing, and fully formal tracing. The study focused on re-testing
and it has been performed in the context of an industry project where the cus-
tomer was a large financial service provider.In the study a) the model was found
useful to capture costs and benefits of the tracing activities and to compare dif-
ferent strategies; b) a combination of tracing approaches proved helpful in bal-
ancing agility and formalism.

Keywords: Software Requirements Tracing, Re-Test, Tracing Activity Model,
Feasibility study.

1 Introduction

The main goal of software development projects is to develop software that fulfills the
requirements of most important stakeholders, i.e., customers and users. However, in
typical projects requirements tend to change throughout the project, e.g. due to re-
vised customer needs or modifications in the target environments. These changes of
requirements may introduce significant extra effort and risk, which need to be as-
sessed realistically when change requests come up, e.g. test cases have to be adapted
in order to test the implementation against the revised requirements. Thus, software
test managers need to understand the likely impact of requirement changes on product
quality and needs for re-testing (regression testing) to continuously balance agile
reaction to requirements changes with systematic quality assurance activities.

An approach to support the assessment of the impact of requirements changes is
formal requirements tracing, which helps to determine necessary changes in the de-
sign and implementation as well as needs for re-testing existing code more quickly

www.manaraa.com

268 M. Heindl and S. Biffl

and accurately. Requirements tracing is formally defined as the ability to follow the
life of a requirement in a forward and backward direction [11], e.g. by explicitly cap-
turing relationships between requirements and related artifacts. For example, a trace
between a requirement and a test case indicates that the test case checks code against
the requirement.

Such traces can be used for change impact analysis: if a requirement changes, a test
engineer can efficiently follow the traces from the requirement to the related test cases
and identify the correct test cases that have to be checked, adapted, and re-run to sys-
tematically re-test the software product.

However, in a real-world project full tracing of all requirements on the most de-
tailed level can be very expensive and time consuming. Thus, the costs and benefits to
support the desired fast and complete change impact analysis need to be investigated
with empirical data. While there are many methods and techniques on how to techni-
cally store requirements traces, there is very few systematic discussion on how to
measure and compare the tracing effort and effectiveness of tracing strategies in an
application scenario such as re-testing.

This paper proposes an initial tracing activity model (TAM), a framework to sys-
tematically describe and help determine the likely efforts and benefits, like reduced
expected delay and risk, of the tracing process in the context of a usage scenario such
as re-testing of software. The TAM defines common elements of various require-
ments tracing approaches: trace specification, generation, deterioration, validation,
rework, and application; and parameters influencing each activity like number of units
to trace, average effort per unit to trace, and requirements volatility.

The model can support requirements and test managers in comparing requirements
tracing strategies, e.g. for tailoring the expected re-test effort and risk based on
selected parameters: process alternatives, expected test-case creation effort, and ex-
pected change-request severity. We apply the TAM in a feasibility study that com-
pares effort, risk, and delay of three tracing strategies: no tracing at all (no-T), full
formal tracing (full-T) for re-testing, and value-based tracing (value-T).

The remainder of the paper is organized as follows: Section 2 summarizes related
work on requirements tracing and requirements-based testing; Section 3 introduces
the tracing activity model and research objectives. Section 4 outlines the feasibility
study and summarizes the results. Section 5 discusses the results and limitations of the
study and lessons learned; finally Section 6 concludes and suggests further work.

2 Related Work on Requirements Tracing and Re-testing

Several approaches have been proposed to effectively and efficiently capture traces
for certain trace applications like change impact analysis and testing [1][4][7].

Many standards for systems development such as the US Department of Defense
(DoD) standard 2167A mandate requirements traceability practice [23]. Gotel and
Finkelstein [11] define requirements tracing as the ability to follow the life of a re-
quirement in both a backward and forward direction. Requirements traceability is an
issue for an organization to reach CMMI level 3 making tracing an issue that many
maturing software development organizations have to consider: the assessment for

www.manaraa.com

 Modeling of Requirements Tracing 269

maturity level 3 there contains questions concerning requirements tracing: whether
requirements traces are applied to design and code and whether requirements traces
are used in the test phases.

The tracing community, e.g., at the Automated software engineering (ASE) tracing
workshop TEFSE [7][8], traditionally puts somewhat more weight on technology than
on process improvement. Basic techniques for requirements tracing are cross refer-
encing schemes [9], key phrase dependencies [18], templates, RT matrices, hypertext
[20], and integration documents [21]. These techniques differ in the quantity and
diversity of information they can trace between, in the number of interconnections
between information they can control, and in the extent to which they can maintain
requirements traces when faced with ongoing changes to requirements.

Commercial requirements management tools like Doors, Requisite Pro, or Serena
RM provide the facility to relate (i.e. create traces between) items stored in a data-
base. These tools also automatically indicate which artifacts are effected if a single
requirement changes (suspect traces). However, the tools do not automate the genera-
tion of trace links (capturing a dependency between two artifacts as a trace), which
remains a manual, expensive, and error-prone activity.

Watkins and Neal [24] report how requirements traceability aids project managers
in: accountability, verification (testing), consistency checking of models, identifica-
tion of conflicting requirements, change management and maintenance, and cost
reduction.

Gotel and Finkelstein [11] also state the requirements traceability problem, caused
by the efforts necessary to capture and maintain traces. Thus, to optimize the cost-
benefit of requirements tracing, a range of approaches focused on effort reduction for
requirements tracing. In general, there are two effort reduction strategies: (1) automa-
tion, and (2) value-based software engineering.

1. Automation. Multiple approaches have been developed to automate trace gen-
eration: Egyed has developed the Trace/Analyzer technique that automatically ac-
quires trace links based on analyzing the trace log of executing key system scenarios
[5][6]. He further defines the tracing parameters: precision (e.g., traces into source
code at method, class, or package level), correctness (wrong vs. missing traces), and
completeness. Other researchers have exploited information retrieval techniques to
automatically derive similarities between source code and documentation [1], or be-
tween different high-level and low-level requirements [17]. Rule-based approaches
have been developed that make use of matching patterns to identify trace links be-
tween requirements and UML object models represented in XML [25]. Neumüller
and Grünbacher developed APIS [22], a data warehouse strategy for requirements
tracing. Cleland-Huang et al. adopt an event-based architecture that links require-
ments and derived artifacts using the publish-subscribe relationship [3].

2. Value-based software engineering. The purpose of a value-based requirements
tracing approach is not to reduce effort of each unit to trace (like automation) but to
trace all requirements with varying levels of precision, and thereby reduce the overall
effort for requirements tracing [13], e.g., high-priority requirements are traced with a
higher level of precision (e.g., at source code method level), while low-priority re-
quirements are traced with lower precision (e.g., at source code package level).

www.manaraa.com

270 M. Heindl and S. Biffl

The effort used to capture traces should be justifiable with the effort that could be
saved by using these traces in software engineering activities like change impact
analysis, testing [4][16][19], or consistency checking. It is a matter of balancing agil-
ity and formalism to come close to an optimal level of cost-benefit [2]. The ap-
proaches described above serve the purpose of reducing the effort to capture traces.

Effort for capturing tracing + effort for trace application by using traces <
effort for trace application without using traces

(1)

Equation 1 captures this idea from a value-based perspective: to achieve a positive
return on investment of requirements tracing the effort of generating and using traces
should be lower than the effort for a trace application without traces. Such trace appli-
cations are (amongst others) change impact analysis and re-testing [10]. Besides effort
of capturing traces, reduction of risk due to missed traces and delay due to the need to
update traces are criteria that determine the usefulness of tracing approaches for soft-
ware engineering activities.

Changes of requirements affect test cases and other artifacts [12]. Change impact
analysis is the activity where the impacts of a requirement’s change on other artifacts
are identified [18]. Usually, all artifacts have to be scanned for needed adoptions
when a change request for a requirement occurs. A trace-based approach relates re-
quirements with other artifacts to indicate interdependencies. These relations (traces)
can be used during change impact analysis for more efficient and more correct identi-
fication of potential change locations.

In [13] we proposed an initial cost-benefit model, where the following parameters
that influence the cost-benefit of RT are identified: number of requirements and arti-
facts to be traced, volatility of requirements, and effort for tracing. In [14] we further
discussed the effects of trace correctness as parameter influencing the cost-benefit of
RT. However, tracing activities were not modeled explicitly, which would facilitate a
more systematic discussion of the merits of different tracing approaches.

3 An Initial Tracing Activity Model

Most work in requirements tracing research has focused more on technology than on
processes supported by this technology to generate and use traces. For the systematic
comparison of tracing alternatives we propose in this section a process model, the
tracing activity model (TAM), which contains the activities and parameters found in
research tracing approaches; we label the framework as initial, although it is based on
a systematic review literature and tracing activities in practice, as the external valida-
tion process has not yet concluded. The model can be used as basis to formally evalu-
ate and compare tracing approaches as well as their costs and benefits.

3.1 Tracing Process Variants, Activities, and Parameters

The tracing activity model (TAM) in Figure 1 depicts a set of activities to provide and
maintain the benefits of traces over time. The model is a framework to measure the

www.manaraa.com

 Modeling of Requirements Tracing 271

cost and benefit of requirements tracing in order to compare several tracing strategies
for a development project. The framework is based on previous work that identified
tracing parameters, e.g., [3][7][8][13][14][17].

The activities in the model are building blocks identified from practice and litera-
ture and follow the life cycle of a set of traces.

Trace Specification is the activity where the project manager defines the types of
traces that the project team should capture and maintain. For example, the project
manager can decide to capture traces between requirements, source code elements,
and test cases. This activity influences tracing effort based on the following parame-
ters: Number of artifacts to be traced, number of traces, and artifacts to be traced.
Other relevant parameters are tracing scope, precision of traces [7][8][13],

Fig. 1. Tracing activity model: Activities and process variants

Trace Generation. Trace generation is the activity of identifying and explicitly cap-
turing traces between artifacts. Methods for trace generation range from manually
capturing traces in matrices or requirements management tools that automatically
create traces between artifacts based. The effort to generate traces in a project depends
on the following parameters [13]:

• Number of requirements: in a software development project; the effort for
tracing increases with increasing number of requirements.

• Number of artifacts to be traced to the higher the number of artifacts, the
higher is the effort to create traces between them.

• Average trace effort per unit to trace, which depends on the used tools and
the point in time of tracing.

Other relevant parameters are: number of traces, tool support, point in time of trace
generation in the software development process, complexity/size of tracing objects,
value of traces [13], correctness and completeness of traces.

Trace Deterioration. Trace deterioration is more the impact of external events than
an activity. Traces can degrade over time as related artifacts change. If only the arti-
facts are updated, e.g., due to change requests, and the traceability information is not
updated, the set of existing traces is likely to get less valid over time. Deterioration of

www.manaraa.com

272 M. Heindl and S. Biffl

traces affects the value of traces, because it reduces the correctness and completeness
of traces.

Trace Validation and Rework. Trace validation is the activity that checks if the
existing traceability information is valid or needs to be updated, e.g., identify missing
trace links. In the example above, when artifact A changes fundamentally so that there
is no longer a relationship to artifact B, trace validation would check the trace be-
tween A and B and flag it as obsolete. Trace validation is necessary to keep the trace
set (traceability information) correct and up to date, so that the traces are still useful
when used, e.g., for change impact analyses. We call the updating of traces “trace
rework”. Trace validation and trace rework are often performed together as they en-
sure correct and up-to-date traces and counter trace deterioration effects. The effort
for validation and rework depend partly on the volatility of requirements.

The tracing activities are not necessarily performed in sequence. Furthermore,
some activities are mandatory, like trace generation, whereas other activities are op-
tional, as indicated by the arrows in Figure 1:

• Trace Usage directly after generation (process variant 1 in figure 1): Trace
deterioration depends on the changes made to certain artifacts. If traces stay
valid over time and do not deteriorate, validation and rework are not neces-
sary so that the existing traces can be used, e.g., for change impact analyses.

• Using deteriorated traces (process variant 2 in figure 1) without validating
and reworking them before is possible, but reduces the traces’ benefits, be-
cause wrong or missing traces may hinder the supported activity more than
they help

• No Deterioration (process variant 3b in figure 1): Traces can be validated
after generation whenever the project manager wants, even when they did
not deteriorate.

Trace Usage. Finally, traceability information is used as input to tracing applications
like change impact analysis, testing, or consistency checking [24]. The overall effort
of such a tracing application is expected be lowered by using traces. The benefits of
tracing during trace usage depend on parameters explained in [15].

The cost-benefit of requirements traceability can be determined as the balance of
efforts necessary to generate, validate, and rework traces (cost); and saved efforts
during trace usage, reduced risk and delay of tracing (benefits during change impact
analysis). To maximize the net gain of requirements tracing the effort of generating,
validating and reworking traces can be minimized, or the saved effort of trace usage
can be maximized.

3.2 Research Objectives

The value of tracing comes from using the trace information in an activity such as re-
testing that is likely to be considerably harder, more expensive, or to take longer
without appropriate traces. If a usage scenario of tracing is well defined, trace genera-
tion can be tailored to provide appropriate traces more effectively and efficiently.
Keeping traceability in the face of artifact changes takes further maintenance efforts.

www.manaraa.com

 Modeling of Requirements Tracing 273

The tracing activity model allows to formally define tracing strategies for a usage
scenario by selecting the activities to be performed and by setting or varying the ac-
tivity parameters.

We address the following research question:

• RQ1: How useful is the TAM to model requirements tracing strategies and to
determine and compare their efforts?

• RQ: To what extent can we balance the agility of a re-testing approach with-
out using traces and the formalism of a systematic tracing approach for re-
testing with a value-based approach?

In order to evaluate the usefulness of the tracing activity model we conducted a
small feasibility study in the finance domain, where we applied the TAM to 3 tracing
strategies for the trace application re-testing. We discussed the usefulness of the
re-testing strategies and the tracing model with development experts. If useful, the
lessons learned from our evaluation could be a basis for extrapolation of tracing
strategies and cost-benefit parameters to larger projects.

Re-testing is a software engineering activity that can be supported well by re-
quirements tracing. The goal of a trace-based testing approach can be to make testing
less expensive, less risky, and to reduce the delay. For a positive return on investment
of tracing the effort to generate and maintain traces plus the effort of re-testing has to
be lower than the effort of testing without tracing support.

4 Application of the TAM in an Industrial Feasibility Study

This section describes a feasibility study to validate the initial TAM framework con-
cept. Together with practitioners from the quality assurance department of a large
financial service provider we modeled 3 tracing strategies by using TAM building
blocks and parameters and calculated tracing efforts of each strategy, their risks and
delay in order to support the practitioners in deciding which tracing strategy provides
the best support for re-testing in the practitioners’ particular project context. This
section describes an overview how we modeled each tracing strategy; detailed infor-
mation of the study context can be found in the technical report [15].

The main focus of the study was to compare the efforts of each tracing strategy and
the expected benefits of trace usage for re-testing. The TAM output variables were (1)
the total effort of re-testing, (2) the risk of each strategy, and (3) the delay. Input vari-
ables were parameters covered the number of test cases, effort to create a trace, effort
to create a test case, change impact analysis effort, etc. (see [15] for a comprehensive
list of parameters).

Based on discussions with the experts in the industry environment and suggestions
from literature we defined and compared 3 tracing strategies for re-testing: no tracing
at all (no-T), full formal tracing (full-T), and value-based tracing (value-T). The data
from this study can provide an initial snapshot in a typical scenario to find out
whether the framework are useful to provide data and the proposed tracing strategies
seem worthwhile for further discussion.

No tracing at all (no-T). As a baseline strategy we used the no-T strategy, which was
the standard strategy in the feasibility study context; in this traditional re-testing

www.manaraa.com

274 M. Heindl and S. Biffl

process there is no trace support. Thus the activities of the tracing activity model are
not performed and re-testing has to cope without traces: For each change request, the
testers create new test cases instead of re-using and adapting existing ones. Obsolete
test cases are replaced by new ones in order to avoid the risk of having redundant or
inconsistent test cases, and to make sure everything is tested and test cases are still
valuable after the change.

E(no-T) = #cr * #tc * tcn + dor. (2a)

E(no-T) = 20 change requests * 6 test cases* 1hrs + 6*700*8 min =
120 hrs + 560 hrs = 680 hrs.

(2b)

Equation (2a) calculates the overall re-testing effort following the no-T strategy:
for each change request (#cr), new test cases are created with the expected effort (#tc*
tcn). Finally, the testers have to check newly created test cases with existing test cases
and delete redundant (obsolete) old test cases (dor).

In the particular study the total effort for no-T was as calculated in Eqn 2b (see
[15] for detailed explanation.

Full formal tracing (full-T) for re-testing. In the full-T strategy, testers systemati-
cally establish traceability by relating requirements and test cases (full tracing) via a
tool, the Mercury Test Director. When a change request occurs, they check, and adapt
existing test cases whenever possible; else they create new test cases.

E(full-T) = #tntc * te + cia_T * #cr + tcnra * #tc * #cr (3)

Equation (3) calculates the overall re-testing effort following the full-T strategy:
The formula consists of 3 parts: (a) upfront traceability effort (#tntc * te), which es-
tablishes traceability for each existing test case, (b) the effort to identify affected test
cases for each change request (cia_T * #cr), and (c) the effort needed to either reuse
(tcr) or adapt (tca) existing test cases, depending on the severity of the change re-
quests (#cr). If existing test cases can neither be reused nor adapted, new test cases
have to be developed (tcn).

The shares of test cases that can be reused, adapted, or need to be created anew
typically has an important impact on the overall effort of re-testing.

The effort of full-T for change impact analysis depends on how many traces be-
tween requirements and test cases can be reused, have to be adapted, or must be cre-
ated. These values depend on the type of change request, as not every change request
effects artifacts in the same way, e.g., there are simple low-effort change requests,
e.g., affecting locally the user interface, whereas more severe change requests may
need more extensive adaptations in several software product parts. Eqn 4a and 4b
depict the efforts for full-T.

CIA_T effort overall = 54 + 86 + 33 hrs = 173 hours (4a)

E(full-T) = upfront trace effort + CIA_T = 350 + 173 = 523 hrs (4b)

www.manaraa.com

 Modeling of Requirements Tracing 275

Based on effort reports for typical change requests in the case study context we
categorized change request into the classes: Mini (small), Midi (medium), and Maxi
(severe) (see [15] for details).

Value-based tracing (value-T) is a hybrid between full-T and ad-hoc tracing. Usu-
ally the upfront effort for full-T is considerably high, because all existing require-
ments have to be traced to test cases. value-T tries to reduce this tracing effort by
establishing traceability on a coarse level (to test case packages instead of particular
test cases) and to refine them ad-hoc when necessary. That means that all require-
ments are traced to test case packages and when change requests occur for some
requirements, the traces from these test cases are refined to particular test cases to
improve change impact analysis. Equation (5) calculates the overall re-testing effort
following the value-T strategy:

E(value-T) = upfront trace effort (on package level) + change impact
analysis (value-T)

(5a)

E(value-T) = 70 hrs + 325 hrs = 395 hrs (5b)

The upfront tracing effort for value-T is lower since traces have to be captured on
more coarse level of detail than with full-T (70 hrs in comparison to 350 hrs with full-
T). The change impact analysis effort for value-T consists of refining traces from
changing requirements to the affected test case packages. The effort for identifying
particular test cases by refinement was 325 hrs in the study resulting in a total effort
of 395 hrs for the value-based tracing strategy to support re-testing.

5 Discussion

The purpose of the case study was to evaluate the feasibility of the TAM to model
tracing strategies, in our case with focus on effort, also considering delay, and risk.

For practical reasons, the case study size and context was chosen to allow evaluat-
ing the approaches in a reasonable amount of time. However, the case study project
setting seems typical in the company and financial service sector; the project context
allows reasonable insight into the feasibility of the trace-based re-testing strategy in
this environment.

In the feasibility study project, we deliberately applied a simple process variant
from the TAM focusing on the activities trace specification, trace generation and the
usage of generated traces for re-testing. Trace deterioration, validation and re-work
were not enacted; rather we assumed for trace usage all generated traces to be correct.
While this reduction of scope limits the experience this focus was found beneficial to
make sure that the proposed process is actually applied in the practical setting.

As with any empirical study the external validity of only one study can not be suf-
ficient for general guidelines, but needs careful examination in a range of representa-
tive settings. Furthermore, we analysed only a simple instantiation of the tracing
activity model in the case study; consisting of trace generation and trace usage, but
without considering trace deterioration, and consequently neither trace validation nor

www.manaraa.com

276 M. Heindl and S. Biffl

rework. In practice incorrect traces and trace deterioration can considerably lower
tracing benefits and need to be investigated.

Modelling the 3 tracing strategies by using TAM activities and parameters pro-
vided data points for effort of each strategy. As these are single data points in a spe-
cific study setting, we see the results as snap shots, which should motivate further
data collection to allow statistical data analysis and sensitivity analysis.

Comparing the 680 person hours effort of the no-T strategy, where new test cases
are created for each test case, with the full-T alternative, with 523 person hours, full-T
takes around 20% less effort. In this case the upfront investment into traceability pays
off. In many cases, full tracing (tracing each requirement to each relevant test case)
can cause considerably high effort which may prevent tracing in practice. Here, the
study results suggest that the value-based strategy to trace requirements to test cases
on a coarse level and refine them later on demand to be a promising approach that can
significantly save efforts.

Besides effort, the alternatives also differ in delay when traces can be used for the
trace application, in our case re-testing. value-T has a larger delay, because trace
refinement has to be done before re-test. Concerning risk, no-T would be more risky
if obsolete test cases were not checked. Inconsistent or redundant test case sets could
then result in increased hidden testing effort or lower-quality test sets.

Lessons Learned from the Feasibility Study. The tracing activity model was found
useful for systematically modeling the tracing alternatives, e.g., no tracing, systematic
full tracing, and value-based tracing for the certain tracing application re-testing. The
model helps make alternative strategies comparable, as it makes the main tracing ac-
tivities explicit and allows mapping relevant parameters that influence tracing costs
and benefits. Some input parameters (like number of change requests in the project, or
effort to create a test case) had to be estimated based on practitioners’ experience.
Other data elements could be measured in the project context, e.g., number of require-
ments. The TAM allows choosing from the listed tracing activities and parameters and
selecting the relevant ones to model tracing strategies for a particular usage scenario.

According to the expert feedback the calculated efforts provide a good input to rea-
son about which tracing strategy seems most beneficial in a particular project context.

The lessons learned of our study for trace-support change impact analysis are:

• TAM provides useful building blocks for reasoning about relevant parame-
ters (efforts, risks, etc.) of a tracing strategy and estimation of outcomes in
advance helps to rationally discuss candidates for the best-fitting strategy.

• The volatility of traces is a major risk for full tracing. In volatile parts of
the project, agile (just in time) or value-based approaches are favorable as
full tracing has a particularly high risk of loosing upfront investments in
tracing in these volatile areas.

• Full tracing provides detailed traces, which are particularly useful for
situations when artifacts are not volatile and quick feedback is at a pre-
mium, e.g., for comprehensive cross checks at milestone reviews.

• If calculated efforts of tracing strategies do not differ significantly, choose
a value-based strategy to provide full (complete) traceability at a coarse
level of detail. This coarse-level traceability can than be refined on de-
mand with reasonable total effort for change impact analysis.

www.manaraa.com

 Modeling of Requirements Tracing 277

6 Conclusion and Further Work

In the paper we proposed an initial tracing activity model (TAM) as a framework for
defining and comparing tracing strategies for various contexts. For each tracing activ-
ity, relevant parameters were identified from related work and practice and mapped
into the model. The model allows to systematically compare tracing strategy activi-
ties, their costs and benefits. We performed a small study in the financial service
domain, where we evaluated the feasibility of the tracing activity model.

Main results of the study are: a) The model was found useful to capture costs and
benefits of the tracing activities and compare different strategies; b) for volatile pro-
jects or project parts just-in-time tracing seems favorable; c) for parts that need quick
feedback detailed upfront preparation of traces can be warranted; d) a combination of
upfront tracing on a coarse level of detail (e.g. package or class level) and just-in-time
detailed tracing of really needed traces can help balancing agility (important from the
project point of view) and formality (that allows evidence-based software process
improvement and is important from the software organization point of view).

Further work will be a) to use TAM as a framework for a systematic literature re-
view concerning requirements tracing and b) to apply TAM for studies on tracing
strategies in other contexts.

References

1. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering traceability
links between code and documentation. IEEE Transactions on Software Engineer-
ing 28(10), 970–983 (2002)

2. Boehm, T.: Balancing Agility and Discipline. Addison Wesley, Reading (2005)
3. Cleland-Huang, J., Zemont, G., Lukasik, W.: A Heterogeneous Solution for Improving the

Return on Investment of Requirements Traceability, RE 2004, pp. 230–239 (2004)
4. Elbaum, S., Gable, D., Rothermel, G.: Understanding and Measuring the Sources of Varia-

tion in the Prioritization of Regression Test Suites, IEEE METRICS (2001)
5. Egyed, A.: A Scenario-Driven Approach to Trace Dependency Analysis. IEEE Transac-

tions on Software Engineering 29(2) (February 2003)
6. Egyed, A., Grünbacher, P.: Automating Requirements Traceability: Beyond the Record &

Replay Paradigm. In: Proceedings 17th International Conference on Automated Software
Engineering, ASE 2002, Edinburgh, pp. 163–171 (2002)

7. Egyed, A., Biffl, S., Heindl, M., Grünbacher, P.: Determining the cost-quality trade-off for
automated software traceability. In: ASE 2005, pp. 360–363 (2005)

8. Egyed, A., Biffl, S., Heindl, M., Grünbacher, P.: A value-based approach for understand-
ing cost-benefit trade-offs during automated software traceability. In: Proc. 3rd int. work-
shop on Traceability in emerging forms of SE (TEFSE 2005), Long Beach, California
(2005)

9. Evans, M.W.: The Software Factory. John Wiley & Sons, Chichester (1989)
10. Frankl, P.G., Rothermel, G., Sayre, K.: An Empirical Comparison of Two Safe Regression

Test Selection Techniques. In: Proceedings of the 2003 International Symposium on Em-
pirical Software Engineering (ISESE 2003) (2003)

11. Gotel, O.C.Z., Finkelstein, A.C.W.: An analysis of the requirements traceability problem.
In: 1st International Conference on Requirements Engineering, pp. 94–101 (1994)

www.manaraa.com

278 M. Heindl and S. Biffl

12. Harker, S.D.P., Eason, K.D.: The Change and Evolution of Requirements as a Challenge to
the Practice of Software Engineering. IEEE, Los Alamitos (1992)

13. Heindl, M., Biffl, S.: A Case Study on Value-Based Requirements Tracing. In: Proc.
ESEC/FSE, pp. 60–69 (2005)

14. Heindl, M., Biffl, S.: The Impact of Trace Correctness Assumptions. In: 5th ACM/IEEE
International Symposium on Empirical Software Engineering 2006 (ISESE 2006) (2006)

15. Heindl, M., Biffl, S.: An Initial Tracing Activity Model to Balance Tracing Agility and
Formalism - Requirements Tracing Strategies for Change Impact Analysis and Re-Testing,
Technical Report, TU Wien (2007),
http://qse.ifs.tuwien.ac.at/publications

16. Hsia, P., Gao, J., Samuel, J., Kung, D., Toyoshima, Y., Chen, C.: Behavior-based Accep-
tance Testing of Software Systems: A Formal Scenario Approach. IEEE, Los Alamitos
(1994)

17. Huffman Hayes, J., Dekhtyar, A., Karthikeyan Sundaram, S.: Advancing Candidate Link
Generation for Requirements Tracing: The Study of Methods. IEEE Trans. on Software
Engineering 32(1) (January 2006)

18. Jackson, J.: A Keyphrase Based Traceability Scheme. IEE Colloquium on Tools and
Techniques for Maintaining Traceability during Design, 2-1–2-4 (1991)

19. Juristo, N., Moreno, A.M., Vegas, S.: Reviewing 25 Years of Testing Technique Experi-
ments. Journal Empirical Software Engineering 9(1-2), 7–44 (2004)

20. Kaindl, H.: The Missing Link in Requirements Engineering. ACM SigSoft Soft. Eng.
Notes 18(2), 30–39 (1993)

21. Lefering, M.: An Incremental Integration Tool between Requirements Engineering and
Programming in the Large. In: Proc. IEEE International Symp. on Requirements Engineer-
ing, San Diego, California, January 4-6, pp. 82–89 (1993)

22. Neumüller, C., Grünbacher, P.: Automating Software Traceability in Very Small Compa-
nies: A Case Study and Lessons Learned. In: Proc. IEEE Automated SE 2006, pp. 145–156
(2006)

23. Ramesh, B., Powers, T., Stubbs, C., Edwards, M.: Implementing Requirements Traceabil-
ity: A Case Study. IEEE, Los Alamitos (1995)

24. Watkins, R., Neal, M.: Why and how of Requirements Tracing. IEEE Software 11(7),
104–106 (1994)

25. Zisman, A., Spanoudakis, G., Perez-Minana, E., Krause, P.: Tracing software requirements
artefacts (2003)

www.manaraa.com

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 279–290, 2008.
© IFIP International Federation for Information Processing 2008

Support for Cooperative Design of End-User
Tailorable Software

Jeanette Eriksson

Blekinge Institute of Technology, School of Engineering,
P.O. Box 520 S-37225 Ronneby

jeanette.eriksson@bth.se

Abstract. Many contemporary business areas are dynamic and characterized
by change. End-user tailorable software that allows the users to continue its
evolution and adjustment is suitable in such environments. Unfortunately, the
changes in the environment make it hard to know what flexibility to build into
the software. The study presented here was aimed at providing an instrument
that makes it possible to distinguish between different types of end-user tailor-
ing, and to support discussions between users and developers concerning what
kind of tailorability to build into the software. The study was performed in co-
operation with a telecom company where tailorable software is essential to keep
up with the fast changing market. The study resulted in ten attributes character-
izing end-user tailorable software and a matrix capturing the values of the at-
tributes. The matrix can be used as a guide and a basis for design decisions
when implementing end-user tailorable software.

Keywords: Attributes of end-user tailoring, Design support, User participation.

1 Introduction

A fast changing world requires more and more flexibility in software, to provide
support for higher reusability and to prevent the software from expiring too fast. One
way to provide this kind of flexibility is via end-user tailoring. A tailorable system is
modified while it is being used, as opposed to being changed during the development
process. Tailoring a system is “continuing designing in use” [10, p. 223]. It is possible
for a user to change a tailorable system through the support of some kind of interface.

Tailorable software is needed when the environment is characterized by fast and
continuous change. As Stevens and his colleagues put it “The situatedness of the use
and the dynamics of the environment make it necessary to build tailorable systems.
However, at the same time these facts make it so difficult to provide the right dimen-
sions of tailorability.” [19, p. 273]. The study presented in this paper aims at provid-
ing an instrument that can support the work of finding the right dimension of tailoring
when designing end-user tailorable software.

When discussing what we here call tailorability with people in industry, they sel-
dom think of or talk about this kind of software in terms of tailoring; instead they
simply call it flexibility. When observing work with tailorable software, or perform-
ing interviews or discussing tailorable software with people in industry, it emerged
that there was confusion in the discussions between users and developers when they

www.manaraa.com

280 J. Eriksson

discussed flexibility. The reason for this is that they view flexibility from different
perspectives. Flexible software is one thing when using it and a totally different thing
when building the software. Accordingly, we have to look at tailoring from both the
system and the user perspective, [20] as the user perspective reflects how users work
with tailoring and the system perspective elucidates important issues from the devel-
opers’ point of view.

There was even misunderstanding amongst the developers themselves. The reason
for this was revealed to be the fact that the perspective on the software seamlessly
alters between a system and user perspective. The developers in particular make this
shift without thinking. The reason for this is of course that they have to take both
perspectives into account in order to make good software. The fact that the differ-
ences between the two perspectives are considerable and that they are unaware of the
shift in perspectives makes discussions about flexibility very complex. Under such
circumstances it is hard to reach a consensus about which flexibility to implement
whilst at the same time being convinced that the chosen type of flexibility is best for
the situation. To make software successful it is important that there is a consensus
between users and developers about how the system must work. Users and developers
must have a common understanding of the phenomenon to reach a valid agreement
[15]. If both developers and users understand tailoring and the differences inherent in
it, then it is easier to discuss design issues and to make informed design decisions.

From an industrial perspective we end up with two issues to be dealt with:

• It is hard to know which dimensions of tailoring to implement.
• It is hard to discuss tailoring, since users and developers have different un-

derstandings of the phenomenon.

There are several conditions concerning user knowledge, technical issues and
business organization that must be fulfilled to make a tailorable system work in the
long run, and the tailorable software has to be supported by a collaboration be-
tween developers and users [5]. The development of tailorable software is an ongo-
ing process where users are co-designers, [7] as it is users who evolve the software
at use time. This kind of ongoing design can be called Meta Design [7]. Meta-
Design is a development process where stakeholders are co-designers. Participa-
tory Design (PD) [18] is another paradigm that includes stakeholders in the design
process. PD has historically focused on involving users in the design process at the
time for design, but the Participatory Design focus can be broaden to even include
user involvement in design during use time [8]. Informed Participation [3, 4] is
related to PD, as Informed Participation also lets people other than developers
collaborate in design efforts. Informed Participation addresses open-ended design
issues and tries to obtain an ownership of the problems among participants and to
make the participants actively contribute to the design activities. The matrix
presented in this paper is intended as support for informed participation in a de-
velopment project. Often users’ participation in development projects is mainly
concerned with the user interface. We agree with [11] that the users’ view of the
system is not only the interface. Task related needs are what motivate end users to
make changes to the system [14].

Human-centred design is necessary when designing tailorable software, since the
users are co-designers. The users bring profound knowledge of the business process

www.manaraa.com

 Support for Cooperative Design of End-User Tailorable Software 281

and organizational issues into the development project, which should be used in the
design of the technical solution [9]. Gasson [9] also argues that there is a need for a
dialectic process between organizational problems, implementation of changes in the
business process and technical solutions to achieve a balance between human-
centeredness and the design of technical solutions. The study presented in this paper
aims at providing an application of Gasson’s ideas in the context of tailorable soft-
ware. The application, or matrix, is targeted to deal with the issues of deciding what
dimension of tailoring to implement, by supporting a common understanding of end-
user tailoring among users and developers.

A classification is a useful tool to aid an understanding of a phenomenon such as
tailoring. A classification consisting of four categorises of tailoring is presented in [6].
The categorization is designed to take both the user and system perspectives into
account, so that it can act as a basis for communication between developers and users
when designing tailorable software. The categorization presented in [6] was found to
be promising for use in industry. The categorization of end-user tailorable software is
intended as a means of communications to involve the users more in the design proc-
ess and is therefore suitable as a basis for supporting the cooperative design of end-
user tailorable software.

The categorization is presented in Section 2. The formulation of the categories is at
a rather abstract level and to make the categorization more precise and easier to use in
practice, the categories should be assigned tangible attributes or characteristics. The
idea is that the attributes of the categories can guide you to the most appropriate type
of tailoring for a specific situation after you have pinpointed what type of business
environment the software will be a part of, the skill and knowledge of the users and
how much the developers are able to contribute to the tailoring process after the soft-
ware has come in use.

In summary we have two research questions to answer to be able to deal with the
industrial problems discussed above:

1. Which attributes characterize end-user tailorable software?
2. How can different dimensions of end-user tailoring be distinguished?

To answer the questions, a study was performed in cooperation with a major tele-
com company in Sweden. Developers and users were interviewed to elucidate which
attributes are relevant to describe tailoring and how they perceive different kinds of
end-user tailoring.

The rest of the paper is structured as follows. The next section will present the
categorization of tailoring that acts as a base for the study. Section 3 describes
the research method applied. The results of the study are presented in Section 4. The
section consists of two parts, each answering one of the research questions. The first
research question resulted in ten attributes characterizing end-user tailorable software
and the second research question resulted in a matrix summarizing the values of each
of the attributes for the four different categories of tailoring. The matrix can be used
to support the cooperative design process when designing tailorable software. Finally,
the paper ends with a discussion and conclusions.

www.manaraa.com

282 J. Eriksson

2 Categorization of Tailoring

The categorization proposed by Eriksson et al. [6] is intended as a means of commu-
nication between developers and users in situations when deciding what kind of tai-
lorability to implement. The categorization takes into account both a user perspective
and a system perspective. The user perspective represents which changes can be made
or the purpose of the activity, while the system perspective corresponds to how the
change is achieved in the system (on a high level). The categorization is shown in
Table 1.

Table 1. Categorization of tailorable software

 User Perspective System Perspective
Customization The end-user makes

small changes, e.g. sets
parameter values.

Parameter Values are interpreted and used
in existing code.

Composition The end-user relates
different existing com-
ponents to each other.

The relationships between the components
are defined by a composition language. (It
does not matter which programming
language)
Components are integrated into the soft-
ware by the implementation language and
the new component does not differ from
the pre-existing components. The com-
posed component is used as a starting
point for further tailoring.

Expansion The end-user creates a
new component.

The software may generate code that is
added to the pre-existing code, or incorpo-
rate the new component into the applica-
tion in some other way.
New code (implemented by the end-user)
is added to the pre-existing code.

Extension The end-user adds code
to the software.

The application may also generate code to
integrate the end-user’s code into the
software.

Customization is the simplest way of doing tailoring. It means that the user sets

some values of one or more parameters and those parameters manage what function-
ality that is used. Composition means that the user has a set of components to choose
from and he or she can connect them in specific ways to gain the desired functional-
ity. Expansion also means that the user chooses components from a set, but the differ-
ence is that the users’ combination of components is build into the system to become
an integrated part. The new component is treated in the same way as the predefined
components and will be accessible in the set to choose from next time the software is
tailored. Expansion is the category which provides for the highest flexibility. It means
that the user writes code that is integrated into the system either by wrapping up the

www.manaraa.com

 Support for Cooperative Design of End-User Tailorable Software 283

new code into system generated code or, if written in a predefined way, through sim-
ply adding it to the code mass of the software. The user can either write the code in a
high level language or in a visual programming language.

3 Research Method

Tailoring is especially well suited for applications used in a business environment that
is characterized by fast changes, such as that in the telecom business. For example,
new services continuously evolve and the supporting business systems therefore have
to adapt to the altered requirements. The study was performed in cooperation with a
telecom operator in Sweden. The company is dependent on flexible software that
allows the user to alter the software when the need arises. Accordingly they have
many tailorable systems running. The study aimed to elucidate (1) which attributes
can be ascribed to tailorable software and (2) how different types of tailoring can be
distinguished from each other. To achieve this, interviews were conducted where the
categorization was used as a basis for the interviews.

We interviewed six developers and four users at the company. The developers were
programmers, system owners and technical project leaders. The users all worked with
several different systems, but their main tasks were within the same system. The users
were a system coordinator, a work manager, users responsible for working with new
requirements, and users helping out with further development of the system.
The interviews lasted approximately one hour to one and a half hours. Since a pilot
study made it clear that it might be necessary to elaborate on some of the questions,
we performed semi-structured interviews [17] which means that the respondents were
asked the same questions in the same order, but follow-up questions were asked and
explanations were given.

To be able to discuss the four categories on equal terms with both developers and
users, the categories were translated into four representative examples. The examples
were at a rather high level, free from unnecessary details, but concrete enough to
allow the respondents to discuss the examples. The examples were not confined to the
tasks in the telecom company. A summary of the examples in English can be found at
http://www.ipd.bth.se/jer/tailoring/examples.htm

The interviews were audio taped and transcribed in full to provide for traceability.
The individual transcriptions and the analysis of the material were sent to the respon-
dents for verification.

3.1 Design of Interviews

The researcher interviewed one respondent at a time. First the developers were inter-
viewed, and then the users. The interviews were conducted according to a specific
sequence. First the respondents read the examples of the different categories and
thereafter they were asked if they could spontaneously assign attributes and qualities
to the first example representing customization. Thereafter they had to answer some
statements about the example and at the end they were asked if they could find any
resemblances between the given example, and systems they work with or know about

www.manaraa.com

284 J. Eriksson

at the company. The procedure was the same for all four examples representing cus-
tomization, composition, expansion and extension respectively.

After reading the examples and spontaneously expressing their views on the char-
acteristics of the categories, the respondents had to take a standpoint on eleven pro-
posed attributes that originate from the cooperation with the telecom company. The
attributes have emerged through participant observations, discussions and interviews.

The interviews made it clear that changes may be required because of changes in
the business environment, because of a need for improved usability or because of
internal issues in the system itself. The attributes can be divided into corresponding
groups. One group concerned the category’s suitability for different types of business
changes. Another group of attributes related to usability and a third group involved
software attributes. The attributes are listed below.

Business changes
Attribute 1: Frequency of change – how often the business changes occur, frequently

or infrequently.
Attribute 2: Anticipation of change – to what extent it is possible to anticipate the

business changes.
Attribute 3: Durability of change – how long the business changes last.
Attribute 4: System support for change – how well the software supports business

changes
Attribute 5: Consequences if handled wrongly – how extensive the consequences

would be for the company if the changes are handled wrongly.

Usability issues
Attribute 6: Simplicity – how easy it is to realize the changes in the software
Attribute 7: User control – how much control the users have of what happens in the

software
Attribute 8: Accountability – how easy it is for the users to know if the result is

correct.
Attribute 9: Realization speed – how fast it is to realize the changes in the software.

Software attributes
Attribute 10: Fault tolerance– to which degree the software prevents mistakes.
Attribute 11: Complexity– how complex the software is

3.2 Analysis

The analysis has been performed in a systematic way, according to a specific, pre-
defined schema. The material from the interviews consists of spontaneously stated
attributes, predefined attributes, comments, and feedback from respondents. The four
components have been considered in the analysis.

The analysis of the interviews consists of two parts that respectively correspond to
the two research questions.

www.manaraa.com

 Support for Cooperative Design of End-User Tailorable Software 285

Analysis 1: Analysis to determine what attributes characterizes end-user tailorable
software.

Analysis 2: Analysis to determine how the respondents perceive the different types
of tailoring and decide a value for each attribute, to be able to distin-
guish different dimensions of tailoring.

Analysis 1. The first step in Analysis 1 is to compare each attribute to see if they are
perceived in the same way for all four categories. If they are the same for all the cate-
gories then they do not add any information that could be used to distinguish between
the categories. All attributes are compared and if they are not the same for all catego-
ries they are added to the pile of remaining attributes. If the attribute is the same for
all four categories the respondents’ comments are consulted to determine if the attrib-
utes really were perceived as the same. Perhaps the respondents had made a statement
based on different interpretations of the proposed attributes. If the attributes are found
to be the same they are removed, otherwise they are added to the pile of remaining
attributes. To facilitate determination of whether the attributes were perceived as the
same, all statements were assigned a value. A statement interpreted as positive to-
wards an attribute generated a score of 300 and a negative statement was assigned 100
points. Accordingly a neutral statement generated 200 points. Initially, to see if the
attributes were the same for all categories, the value of the attribute was summarized.
For example if all the users think that Example 1 has high fault tolerance the sum is
1200 points (4 users x 300 points) and if all the users think that Example 4 has low
fault tolerance it generated a total of 400 points (4 users x 100 points). The sums for
each category are compared and if they are the same they have to be examined further
and each comment must be checked more closely.

The second step in Analysis 1 is an examination of how a respondent’s answers re-
late to the other answers in the group. The coefficient of variance has also been used
as a measure of the disagreements between respondents [16]. If the respondents’ view
of the attributes of the examples varied a lot, then the attributes should be removed, as
this does not reveal anything about the category. The remaining attributes from step A
were examined. If there is a deviation in opinions within the group the respondents’
comments were checked. Based on the comments, the relevance of the attributes was
questioned. If the attribute was found relevant it was added to the pile of remaining
statements otherwise it was removed.

In step three of Analysis 1, the respondents’ spontaneously assigned attributes were
listed and compared with the pre-defined attributes. If they were the same the attrib-
utes were added to the comments, otherwise they were considered as attributes of the
intended category.

Analysis 2. The remaining attributes from Analysis 1 were analysed to explore how
the user group relates to the developers group, per attribute. The median value for
each attribute was used for guidance. If the users and developers agree upon the
attributes the attributes were collected into one pile, but if opinions differ, the respon-
dents’ comments are considered and the user specific-and developer-specific state-
ments are accumulated into separate piles.

www.manaraa.com

286 J. Eriksson

4 Result

When examining the totals in the first step of Analysis 1 there were some attributes
that had the same total, but when the individual scores and the comments were in-
spected it was revealed that they actually differed. The result of the analysis is that
none of the attributes was perceived as the same for all four categories and therefore
none of the attributes could be excluded at this stage.

The second step in Analysis 1 resulted in the removal of three attributes (3, 5 and
6), as there were strong disagreement among the respondents. The attributes con-
cerned durability of changes, consequences if handled wrongly and simplicity. The
respondents regarded durability of change and simplicity as somewhat unimportant,
and their answers were therefore fairly random. The consequences of the change
being handled wrongly were too difficult to state as it is highly dependent on the
situation.

The users found it difficult to spontaneously come up with attributes describing the
four examples. They experienced difficulties in moving from the concrete example to
a more abstract level. They found it to be easier to associate the example with a sys-
tem they work with. It was much easier for developers to come up with attributes for
the four examples and the developers came up with a couple of attributes each.

When comparing the developers’ attributes with the pre-defined attitudes it was
found that most of the attributes were the same. The attributes that differed from the
pre-defined ones related to usability issues and were mentioned by several of the
developers. The attributes were of two kinds and concerned:

Frequency of use: how often the end users use the software and thereby the degree of
familiarity the users have with the software, and
User competence: how skilled the users of the software are.

Analysis resulted thereby in ten relevant attributes that can be used to describe end-
user tailorable software (see Table 2).

The results of Analysis 2 showed that users and developers had the same percep-
tion of Example 1 (customization).

For Example 2 (composition) the users and developers had slightly a different per-
ception of user control, accountability, fault tolerance and complexity. When it comes
to user control and accountability the users judge the accountability and control to be
medium high, while the developers think it is somewhat higher. In other words, the
developers thought that Example 2 contains slightly more accountability and user
control that the users did. For fault tolerance and complexity there were also some
small differences. The users considered the fault tolerance and complexity to be me-
dium high for Example 2, whilst the developers thought that fault tolerance is some-
where between medium high and low and the complexity between medium high and
low. (See Table 2)

Also for Example 3 (expansion) there were some differences in views. One thing
is that the developers had a unanimous view that Example 3 is well suited when
there is a need for high support for changes, but the users are not that sure. They
believe that such software provides quite a lot of flexibility, but they are not certain
that Example 3 really supports change so well that it should be regarded as giving

www.manaraa.com

 Support for Cooperative Design of End-User Tailorable Software 287

“high support of change”. A small variation also exists in the judgment of the
amount of user control and accountability provided by Example 3. The developers
consider Example 3 to provide medium high user control and accountability while
the users believe it to be somewhere between medium high and high. The differences
of opinion in this case were however very small. A more significant difference was
found when it came to anticipation of change. Here the users and developers had
diametrically opposite opinions. The users thought that Example 3 was suitable for
situations characterized by a high degree of anticipated changes. The developers
thought to a higher degree that Example 3 was also well suited for unanticipated
changes (See Table 2).

The issue of user control and accountability for Example 4 (extension) resulted in
some discussions of which knowledge is build into the system and what should be
controlled by the user. Both users and developers agreed that it is possible to view
Example 4 as supporting either high control and accountability or low control and
accountability. There is very little user control and accountability built into
Example 4,but on the other hand the user handling the software should be skilled and
know what he or she is doing. Thereby you could say that the software gives control
to the users. User control and accountability should therefore be regarded as high. The
uncertainty is represented by question marks in Table 2.

Table 2. Matrix of the attribute values of the four categories of end-user tailoring. (L=Low,
M=Medium, H=High, ?= Uncertainty of how to use the attribute).

Characteristics

 C
ustom

ization

 C
om

position

 E
xpansion

E
xtension

Business Changes Frequency of change M M H H

 Anticipation of change H M L-H1 L

 System support of change L M M-H H

Usability Issues User control H M-H M-H ?

 Accountability H M-H M-H ?

 Realization speed H H M M

 Frequency of use L H -2 -

 User competence -3 - M-H H

Software Attributes Fault tolerance H M-H M L

 Complexity L L- M M H

1 Users thought the example was highly suitable for anticipated changes, developers thought the

example was not so suitable for such situations.
2 The spontaneously given attributes were not stated for Example 3 and 4.
3 The spontaneously given attributes were not stated for Example 1 and 2.

www.manaraa.com

288 J. Eriksson

Note that there are two pairs of attributes that show a dependency (Table 2). User
control and accountability have corresponding values for all categories. When user
control is perceived as high, accountability also has a high value. Fault tolerance and
complexity also seem to be related. If fault tolerance is high then complexity is low
and vice versa.

When it came to the spontaneously stated attributes, example 1 was considered
suitable when there are many end users that use the software only occasionally and
Example 2 was regarded as fitting when there are few end users who use the software
frequently. Examples 3 and 4 were believed to be appropriate when the end users are
skilled and used to computer work, but Example 4 was judged to be appropriate only
for a few users that are extremely skilled super users.

The matrix can be used when the tailoring capabilities are insufficient and a new
feature is needed, and a development team is put together with both users and devel-
opers. In such situations, the matrix can act as a gateway to the categorisation of end-
user tailoring and point to a type of tailoring that may be appropriate for the specific
feature. The matrix is intended as a basis for discussion between users and developers
and the matrix has to be accompanied by complementary tools that relate the different
categories of tailoring to implementation techniques to be able to make a decision of
how to implement the feature.

The matrix should be seen as a guiding tool. The matrix should not be seen as pro-
viding the absolute truth. When designing a tailorable system the matrix could be
used as a basis for discussions of the needs and requirements of the specific situation.
What the matrix can do is to help the participants focus on a subset of tailoring possi-
bilities and make it easier to choose the right type of tailoring for a specific situation.
What can be expected from different types of tailorable software is listed in the ma-
trix, but it is the participants in the project that have to make the tradeoffs between the
attributes.

5 Discussion

The matrix is intended for a design environment where the users are informed partici-
pants, and where users and developers claim a common ownership of the software
product developed. The purpose of the matrix is to act as a basis for design discus-
sions where the users and developers discuss the requirements of the tailorable soft-
ware to understand better the domain and design problems. The matrix can help the
design team to pinpoint issues to discuss and to reach a consensus to enable decisions
concerning the dimensions of tailoring needed in the given context. By consulting the
matrix and comparing the values of the attributes with what is needed in a specific
context, it is possible to get an indication of the kind of tailoring to implement and to
be able to make informed design decisions.

There is a similarity between assigning quality attributes to software and assigning
attributes to tailoring categories. Both aim to describe a phenomenon by assigning char-
acteristics to it. There are several software quality models, for example [1, 12, 13], and
their common effort is to manage quality issues in software development. There is a
resemblance between these quality models and the software attributes extracted from
our study. Some of the attributes in the matrix can also be found in some quality

www.manaraa.com

 Support for Cooperative Design of End-User Tailorable Software 289

models. The intention of the matrix is not however to give a general overview of differ-
ent quality attributes. The matrix aims to distinguish between different types of tailoring
and to support design decisions when designing tailorable software. However, there are
some similarities. McCall’s model, for example, is an effort to bridge the gap between
the users’ view and the developers’ view [13]. The matrix also aims to bridge the gap
between users and developers by providing a means of communication, and although
we do not claim it to be as complete as McCall’s model, the study gives us a good indi-
cation of which characteristics can be assigned to the different types of tailoring.

Bosch [2] advocates assessment of the quality attributes during architectural de-
sign. The attributes are used for evaluating the architecture to determine if the archi-
tecture has to be transformed or not. The attributes in the matrix are not used for
evaluation. The intended use of the matrix could be said to be a bottom up approach
in comparison with Bosch’s method. The four categories could be seen as a kind of
“design pattern light” for tailorable software. Instead of imposing a design pattern
after the architecture has failed to provide for the required quality attributes, the ma-
trix starts out from the categories that have assigned attributes and trade-offs are
made. The architecture is then built based on the selected category. Another differ-
ence between Bosch’s approach and ours is that Bosch presumes that it is possible to
assign an exact, measurable value to the quality attribute, but we only assume that the
participants can grade the attributes from low to high.

6 Conclusion

The study made visible ten attributes of end-user tailoring. In interviews with users
and developers at a telecom company the respondents were asked to give their opin-
ions of what characterizes four categories of end-user tailoring. Their perceptions of
the categories were analysed and it was possible to process their views into a matrix
representing four types of tailoring in the form of attribute values. The attributes rep-
resent organizational, business and technical issues to consider and can be used in a
dialectic process to balance the human-centeredness and the technical solution, as
Gasson requires [9].

The matrix can be used as guidance and a basis for design decisions when imple-
menting end-user tailorable software. The attributes are at a level that can be under-
stood by both users and developers and as shown, even though differences exist, the
opinions of users and developers are quite similar. The matrix makes it possible to
distinguish between different dimensions or types of tailoring, by providing values for
the attributes that characterize end-user tailorable software.

The categories and attributes of the categories, together with the matrix and exam-
ples, facilitate the understanding of different types of tailoring and should make it
easier for developers and users to discuss tailorability and the requirements associated
with tailorable systems.

Acknowledgment. This work was partly funded by The Knowledge Foundation in
Sweden under a research grant for the project "Blekinge - Engineering Software
Qualities (BESQ)" (http://www.bth.se/besq).

www.manaraa.com

290 J. Eriksson

References

1. Boehm, B.W., Brown, J.R., Lipov, M.: Quantitative Evaluation of Software Qualities,
North Holland. In: Proceedings of the 2nd International Conference on Software Engineer-
ing, ICSE 1976, California, USA (1976)

2. Bosch, J.: Design and use of Software Architectures: Adopting and evolving a product line
approach. Pearson Education. Addison-Wesley and ACM Press, Reading (2000)

3. Brown, J.S., Duguid, P.: The Social Life of Information. Harward Business School Press,
Boston (2000)

4. Brown, J.S., Duguid, P., Haviland, S.: Toward Informed Participation: Six Scenarios in
Search of Democracy in the Information Age. The Aspen Institute Quarterly 6(4), 49–73
(1994)

5. Eriksson, J., Dittrich, Y.: Combining Tailoring and Evolutionary Software Development
for Rapidly Changing Business Systems. Journal of Organizational and End User Comput-
ing (JOEUC) 19(2) (2007)

6. Eriksson, J., Lindeberg, O., Dittrich, Y.: Four Categories of Tailoring as a Means of Com-
munication. Journal of Software and Systems (submitted, 2007)

7. Fischer, G.: Meta-Design: Beyond User-Centered and Participatory Design. In: Proceed-
ings of HCI International 2003, Crete, Greece, June 2003, pp. 88–92. Lawrence Erlbaum
Associates, Mahwah (2003)

8. Fisher, G., Ostwald, J.: Seeding, Evolutionary Growth, and Reseeding: enriching Participa-
tory Design with Informed Participation. In: Proceedings of the Participatory Design Con-
ference (PDC 2002), Malmö University, Sweden, pp. 135–143 (2002)

9. Gasson, S.: Human-centered vs. user-centered approaches to information system design.
JITTA: Journal of Information Technology Theory and Application 5(2), 29–46 (2003)

10. Henderson, A., Kyng, M.: There’s No Place Like Home: Continuing Design in Use. In:
GreenBaum, J., Kyng, M. (eds.) Design at Work, 1st edn., pp. 219–240. Lawrence Erl-
baum, Hillsdale (1991)

11. Ilvari, J., Iivari, N.: Varieties of User-Centeredness. In: Proceedings of the 39th Annual
Hawaii International Conference on System Sciences, HICSS 2006. IEEE, Hawaii (2006)

12. ISO: ISO/IEC 9126 Information Technology - Software Quality, International Standard
Organization

13. McCall, J.A., Richards, P.K., Walters, G.F.: Factors in Software Quality Nat’l Tech Infor-
mation Service, 1, 2 and 3 (1977)

14. Nardi, B.A.: A Small Matter of Programming - Perspectives on End User Computing. MIT
Press, Cambridge (1993)

15. Preece, J., Sharp, H., Rogers, Y.: Interaction Design - beyond human-computer interaction.
John Wiley & Sons, Inc., New York (2002)

16. Regnell, B., Höst, M., Natt och Dag, J., Beremark, P., Hjelm, T.: Visualization of Agreement
and Satisfaction in Distributed Prioritization of Market Requirements. In: 6th International
Workshop on Requirements Engineering: Foundation for Software Quality, Stockholm,
Sweden (2000)

17. Robson, C.: Real World Research, 2nd edn. Blackwell Publishers Ltd., Oxford (2002)
18. Schuler, D., Namioka, A.: Participatory Design: Principles and Practices. Lawrence Erl-

baum Associates, Hillsdale (1993)
19. Stevens, G., Quaisser, G., Klann, M.: Breaking It Up: An Industrial Case Study of Com-

ponent-Based Tailorable Software Design. In: Lieberman, H., Paternò, F., Wulf, V. (eds.)
End-User Development, vol. 9, p. 492. Springer, Dordrecht (2006)

20. Stiemerling, O.: Component-Based Tailorability, Dissertation. Bonn University, Bonn
(2000)

www.manaraa.com

Manifoldness of Variability Modeling —

Considering the Potential for Further Integration

Mark-Oliver Reiser1,2, Ramin Tavakoli Kolagari2, and Matthias Weber3

1 DaimlerChrysler AG, Research & Technology, GR/ESM,
Alt-Moabit 96a, D-10559 Berlin
moreiser@cs.tu-berlin.de

2 Technische Universität Berlin, Fakultät IV, Lehrstuhl Softwaretechnik,
Franklinstraße 28/29, D-10587 Berlin, Germany

tavakoli@cs.tu-berlin.de
3 Carmeq GmbH, Carnotstrae 6, D-10587 Berlin, Germany

matthias.weber@carmeq.com

Abstract. Variability management has become an important concern
in software and systems engineering. Especially in industrial settings
a rigid management of variability has been identified as an important
prerequisite for further optimization of the development process, e.g. for
reuse of software sub-systems across vehicle models such as the Mercedes
Benz A-Class and C-Class. In response to this growing practical inter-
est, the scientific community has come up with numerous concepts and
techniques for modeling variability. However, despite initial attempts to
integrate or unify some of these manifold approaches, a clear understand-
ing of how they precisely relate to each other is still not yet achieved.

In the paper, various techniques for variability modeling are elabo-
rated and a basic classification scheme is proposed. From this we derive
their common capabilities, which arguably embody the essence of vari-
ability modeling in general. On this basis, a discussion is presented that
concerns the potential and feasibility of integrating all these diverse tech-
niques into a single, common technique for variability modeling.

Keywords: Software product lines, Variability management.

1 Introduction

Over the past decade product line engineering became a popular approach to soft-
ware development both in classical software engineering domains as well as for
industrial software-intensive systems. A software product line is a set of software
products that share a certain degree of commonality while still showing substan-
tial differences and that are developed from a common set of core assets in a pre-
scribed way [1]. In other words, whenever a company has several similar software
products on offer it makes sense to consider developing only a single, but variable
product instead of developing the products in parallel and independently from one
another, thus shifting the focus of development from the individual products to the
product line. Key to all product line engineering is variability management, i.e. the

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 291–303, 2008.
c© IFIP International Federation for Information Processing 2008

www.manaraa.com

292 M.-O. Reiser, R.T. Kolagari, and M. Weber

documentation and management of the commonality and variability between the
products within the scope of the product line.

According to the paradigm of orthogonal variability modeling [2], the vari-
ability between the products in a product line is documented and managed as
a separate, orthogonal aspect of development, called variability dimension. This
dimension is thus clearly set apart from the artifact dimension, i.e. the definition
of the development artifacts, such as requirements, component diagrams, state
charts and test cases.

However, variability is often not only addressed in the variability dimension
alone. Instead, it is common to describe the variability’s precise impact on the
development artifacts within these artifacts themselves, i.e. it is explicitly defined
at what location in an artifact certain variability shows up and what alternative
forms the artifact can take at that location. The fact that in these cases some
aspects of variability are also defined in the artifact dimension need not nec-
essarily be seen as a violation of the orthogonal variability modeling paradigm
(even though it is sometimes seen as such), because the definition of variability
aspects in the artifact dimension only relates to where and how the artifact is
affected by variability. The primary focus of variability management—i.e. the
presentation of an overview of the entire product line’s variability, definition of
dependencies between variations and the global coordination of variability across
several artifacts—is still, mainly, the variability dimension.

Over the past decade, a multitude of different techniques have been proposed
for both the variability dimension (esp. feature modeling [3,4,5,6,7]; decision
tables [8,9]; decision diagrams/trees [10,11]) and for defining variability in the
artifact dimension (esp. approaches for explicitly defining variation points and
their variants in various types of artifacts). Most of these techniques come in a
variety of flavors; an attempt to unify some of them has already been undertaken
or is currently in progress, e.g. for feature modeling [12,13]. When considering
all these methods, a few basic groups of techniques and thus a few fundamental
approaches towards variability modeling can be identified, for example feature
modeling and decision tables. Unfortunately, how these main approaches relate
to each other is not examined in detail and is not well understood. Are they
merely different forms of presenting the same information or are there funda-
mental differences in how they address variability modeling? Since all these tech-
niques are aimed at variability modeling, this situation is unsatisfactory from a
theoretical and conceptual point of view: when proposing different ways to treat
variability, it should be clear how they differ and why the distinction is neces-
sary. Moreover, there is also a practical problem with this splitting up of basic
approaches: When two or more independent product lines need to be related to
each other or integrated into a single higher-level product line, different vari-
ability modeling approaches are usually applied in the individual product lines.
In this case, it must be clear how these approaches relate to each other. Such
product line integration is of particular importance in industrial settings; for ex-
ample, in the automotive industry car manufacturers usually need to integrate
the products, i.e. sub-systems, from numerous suppliers’ product lines.

www.manaraa.com

Manifoldness of Variability Modeling 293

In the remainder of this article, we discuss what basic groups of variability
modeling techniques can be identified and how they relate to each other. This is
done for the variability dimension in Section 2 and for variability in the artifact
dimension in Section 3. Then, in Section 4, we discuss the potential and benefit
of a further integration of these techniques.

2 Variability Dimension

Roughly, three forms of variability modeling in the variability dimension can be
distinguished: decision tables, decision trees/graphs and feature models. Figure 1
shows an excerpt from a decision table, inspired by an example in [8]. A deci-
sion table usually refers to one or more variable development artifacts, in the
example a use case diagram for the scenario ’send message’ (not shown). Each
line in a decision table represents a decision to be taken in order to configure the
corresponding variable artifact(s) of the table. Each such decision has a name
as its unique identifier, a question that formulates the decision to be taken, a
list of possible resolutions, i.e. possible answers to the question, and one effect
or action per resolution that describes how the corresponding variable artifacts
have to be changed in order to configure them in line with the decision taken.
Constraints allow defining interdependencies between decisions in order to re-
strict the available resolutions depending on decisions taken earlier or to hide
decisions when they are no longer valid because of some other decision taken
earlier. For example, if the decision ’Does the phone have a camera?’ was an-
swered with ’no’, the decision ’What is the camera’s resolution ?’ is no longer
valid and can be hidden during configuration. The number and precise meaning
of each column in a decision table varies from one approach to another, but the
example given here illustrates the basic idea of decision tables.

Similarly, decision trees also define decisions to be taken in order to configure
one or more variable artifacts. However, the decisions are represented and ar-
ranged graphically. Figure 2 shows a small example of such a decision tree. The
advantage here is that some selected dependencies between the decisions can eas-
ily be defined in this way. For example, the fact that the decision ’What is the
camera’s resolution?’ is invalid if the camera is previously deselected altogether is

Fig. 1. Excerpt from a sample decision table (cf. [8])

www.manaraa.com

294 M.-O. Reiser, R.T. Kolagari, and M. Weber

clearly visible in the tree. Also, the number of possible product configurations is
easily ascertainable, because each leaf in the decision tree corresponds to exactly
one product configuration. However, this also points at an important problem
with decision trees. They tend to become extremely large in complex cases. This
can be avoided by using directed acyclic graphs instead of trees. Decision tree
approaches (e.g. [14]) differ from one another in many details, but these are not
required for the following discussion.

Fig. 2. Example of a decision tree

Feature models are the third form of variability modeling in the variability di-
mension. A feature is a characteristic or trait that an individual product instance
of a product line may or may not have [15]. The purpose of a feature model is
to provide an overview of both the common and variable characteristics of the
product instances and the dependencies between them. Figure 3 shows an exam-
ple. Each node in the tree depicts a feature (e.g. CruiseControl, Wiper). During
configuration, features are selected or deselected. Child features may only be se-
lected if their parent is. Each child feature has a cardinality stating whether it
is mandatory, i.e. it needs to be selected if the parent is, optional, i.e. it may or
may not be selected if the parent is, or if it can be selected more than once (so
called cloned features ; e.g. Wiper). When a feature is selected more than once,
all its descendants can be configured separately each time the feature is selected.
For example, if two wipers are selected during configuration of the feature model
presented in Figure 3, then the RainSensor can be configured independently for
each of the two. In addition, several children of a single feature can be grouped
to express a certain dependency between them, e.g. the alternativity between
Simple and Adaptive in Figure 3. More general dependencies between features
of different subtrees can be expressed through feature links which usually are de-
picted as an arrow (e.g. between RainSensor and Radar). Furthermore, features
may be parameterized meaning that if the feature is selected during configura-
tion, a value of a certain type has to be provided, for example when Radar is
selected, the minimum distance to the next car has to be supplied as an integer
value (cf. Figure 3).

www.manaraa.com

Manifoldness of Variability Modeling 295

Fig. 3. Example of a feature model with advanced concepts

Again, the details of feature modeling approaches (for an overview refer to
[12]) differ greatly; but for the discussion presented here, the basic idea of feature
modeling suffices.

Since all three forms of variability dimension modeling basically have the same
purpose—presenting an overview of the product line’s variability and providing
a basis for configuration—it makes sense to ask whether they are basically equiv-
alent and are merely different ways of presentation for the same information. In
order to tackle this question more systematically, we examine whether the dif-
ferent forms of variability modeling can be translated into one another without
loss of information.

Translating a decision table into a feature model is quite straightforward. For
yes/no decisions, a simple feature is created; for value decisions, a parameterized
feature is added; and for decisions with a finite set of enumerated resolutions,
a parent feature is created together with a child for each of the allowed reso-
lutions. Decisions’ constraints are turned into feature links. The problems with
this translation are:

(1) The natural-language description expressing the decision to be taken can-
not be expressed in the feature model. The features’ textual descriptions are
not normally formulated in such a way. However, the description of a feature
could still be used for this purpose, or an additional attribute could easily be
introduced, if desired.

(2) Decision constraints can refer to several other decisions in a complex way.
Since feature links are often defined as links from one single source feature to a
single destination feature, this technique is less expressive. Again, this is not a
fundamental problem for the translation because a more flexible feature linking
concept could be provided.

(3) In addition, the feature model created from a decision tree in this way will
be very flat. Since we only require that all the information from the decision table
can be expressed and is therefore present in the feature model, this is not really an
obstacle to such translation. However, it already points to an important problem
that we will encounter below when examining translation in the opposite direction.

www.manaraa.com

296 M.-O. Reiser, R.T. Kolagari, and M. Weber

Despite these limitations, the translation from a decision table to a feature
model works relatively well. Unfortunately, this is not true for the opposite di-
rection. Basically, we can create a decision for each feature that is not mandatory
as follows: for simple features a yes/no decision is created, and for parameterized
features a value decision is provided; alternative features are merged into one de-
cision with one resolution per feature. Parent-child relations are mimicked with
decision constraints. While this mapping works well in principle, we identified
several critical mismatches and problems during our investigation:

(4) Feature links can easily be formulated as decision constraints. However,
in that case the dependency needs to be added to either the source or target
decision, while a feature link represents a dedicated entity between the two. Also,
one feature link can easily be kept apart from other feature links affecting the
same feature and from dependencies that are expressed as parent-child relations,
feature groups, etc. In decision constraints, all these dependencies get mingled
within a single constraint.

(5) The hierarchical structuring defined through the parent-child relationships
gets lost. Although the dependency expressed in a parent-child relation (i.e.
the child may only be selected if the parent is selected) can be preserved in
the corresponding decision constraint, it is not possible to document the fact
that this dependency came from a parent-child relation. In other words, when
looking at the decision table, it is no longer possible to distinguish between the
dependencies that are to be interpreted as parent-child relations or hierarchy and
those that are to be interpreted as feature links. This problem could be solved
by introducing hierarchy in decision tables. However, it would then no longer be
possible to edit them with standard office applications, which is one of the most
important advantages of decision tables.

(6) Typed edges, i.e. types of parent-child relations, cannot be expressed in a
decision table.

(7) Cloned features cannot be translated into standard decision tables. Of
course, a similar concept could be incorporated in decision tables—i.e. several
lines of the table would be replicated during configuration and then configured
separately for each copy—but such a mechanism is not available in any of the
common decision table approaches.

(8) Mandatory features cannot be translated into decision tables. This results
in the most important difference between the forms of variability dimension mod-
eling: in contrast to decision tables and decision trees/graphs, feature modeling
does not primarily focus on the decisions to be taken during configuration and
the resulting effects on the variable artifacts. Instead, feature modeling focuses
directly on the differences and similarities between the product line’s individual
products. More specifically, feature models list all important characteristics of
the individual products and state whether these characteristics are common to
all products or vary from one product to another.

To this extent, decision diagrams/trees are very similar to decision tables.
There is only one additional difference that arises when comparing them to the
other two forms of variability dimension modeling:

www.manaraa.com

Manifoldness of Variability Modeling 297

(9) Decision diagrams/trees bring all configuration decisions into a certain
order. For example, if feature f1 and f2 exclude each other (defined by a feature
link), then neither has priority over the other. By contrast, in a decision tree
with decisions d1 and d2—corresponding to f1 and f2, respectively—either d1 is
asked before d2 (and consequently d2 won’t be asked at all if d1 is answered with
yes) or d2 before d1 (and d1 is therefore skipped in the case of a positive answer
to d2). In the first case, d1 has “priority” and in the second d2. Even though
this does not make a difference on a technical level, it is of great importance
from a methodical point of view.

In summary, we can say that there are fundamental differences between the
three forms of variability dimension modeling.

3 Artifact Dimension Variability

Successful management of variability also includes handling artifact variability,
i.e. variability of software development assets on different realization levels. Ar-
tifact dimension variability can be thought of as being described in different
ways:

– Internal: artifact variability is explicitly expressed within the artifact mean-
ing that the possible design decisions and alternatives are explicitly given in
the artifact descriptions.

– External: artifact variability is described outside the artifact meaning that
the possible design decisions are captured elsewhere than within the artifact
specification. Here, often the variability specification that forms the variabil-
ity dimension is used as the location where the artifact variability is specified,
i.e. the variability dimension is augmented by information on the variability
of the artifact dimension.

Also the configuration of artifacts (process of binding variability) can be man-
aged differently:

– Generative/constructive artifact configuration: artifact configuration is real-
ized by generating the final, configured artifact and/or by composing it out
of basic elements from an overall pool of (variable) artifact elements.

– Alterative artifact configuration: artifact configuration is realized by chang-
ing, i.e. enhancing or reducing, a default artifact model.

Bearing these possible differences in mind, one can derive basic artifact dimen-
sion variability approaches and essential concepts for the modeling of artifact
dimension variability as well as the configuration of variable artifacts. In this
section we provide an exemplary overview of artifact dimension variability by
introducing a category matrix of artifact dimension variability management ap-
proaches, shown in Table 1.

Table 1 gives an overview of basic groups of current approaches for artifact
dimension variability definition. The idea is not to have a complete overview of
existing approaches but to motivate the differences between these four essential
concepts represented as the four fields in the matrix.

www.manaraa.com

298 M.-O. Reiser, R.T. Kolagari, and M. Weber

Table 1. Category matrix of artifact dimension variability management approaches

Internal External

Generative / — e.g. decision models,
constructive feature models

Alterative e.g. explicit variation e.g. aspect-oriented
points and variants model transformation

External and Generative Variability Management Approaches
The field at the top right of the matrix represents approaches that model vari-
ability externally to the artifact and that obtain an artifact configuration by
way of generation or through a composition of individual artifact elements or
fractions of artifacts (e.g. [16] and [17]). As described above, artifact dimension
variability is in this case incorporated into the variability dimension specification,
where decision models for a set of assets as gained from domain engineering—as
presented in PuLSE-CDA [8]—are an example of such an approach (see also
the previous Section 2). Variability and dependency relations are only described
in the decision model—not in the artifact elements. The anchor in the artifact
elements for the decisions is described as part of the decision rule, e.g. by using
a unique identifier for artifact elements. Decisions only refer to the variability
or dependency relations at different levels of detail: thus one can either select
or deselect a specific element or one may set specific values for parameters (see
Figure 1). Invariable elements are thus selected automatically from the element
pool, and transitive or technical relations are also applied automatically. An
external variability modeling approach for a pool of artifact elements is easily
applicable and does not need to be tool-supported in the first place. Complex
variability and dependency relations can be modeled and the expressiveness of
decision models is high because the complete arrangement of the artifact ele-
ments can be described. Besides decision models as an external variability mod-
eling approach for an elementary artifact pool also feature models can be thought
of to be an applicable approach. The problem here is that feature models used for
the configuration of artifact elements need explicit links to the artifact elements.
Furthermore, it must be described at the artifact elements which constellation
of features leads to which configuration of the artifact elements.

Internal and Alterative Variability Management Approaches
The field at the bottom left of Table 1 contains such approaches that model
variability explicitly within the artifact elements of any kind of “default” model,
which is changed in the course of the instantiation process, i.e. either the de-
fault model is enhancing because new elements are added, or it is reducing be-
cause variable elements are dropped from the model. An example of an approach
describing variability internally for an enhancing default model is the explicit
description of variation points, variants and dependency relationships between
them. The default model then comprises all the characteristics (artifact assets)
of the whole product family. The asset abundance is constantly reduced through
variability binding. Describing variability within a variable default model calls

www.manaraa.com

Manifoldness of Variability Modeling 299

for explicit scoping efforts in an early domain engineering phase because all
products with their differences and commonalities are derived from the default
model. Furthermore, it is not easy to obtain an overview of the artifact variabil-
ity from a conceptual point of view because often a single conceptual variability
(e.g. the wiper has a rain sensor) affects an artifact at many different locations
and this variability’s definition is therefore split across many variation points
and, similarly, at a single location many different conceptual variabilities can
have an impact and are thus mingled into a single variation point. Thus if the
differences and commonalities are clearly defined and the artifact variability is
complex in the sense that it is local or only technically based, then an artifact-
internal variability description is reasonable. In order to obtain an overview of
the variability and to facilitate the instantiation process the internal variability
description will in this case often be complemented by an external variability
modeling approach in the variability dimension, e.g. feature models.

External and Alterative Variability Management Approaches
The bottom right field in the matrix corresponds to external variability mod-
eling approaches that change a default model. Once again—as described in the
previous paragraph—the default model can be reduced or enhanced during the
variability instantiation process. An example of such an approach is aspect-
oriented model transformation. Differences between products are captured in
aspects that are described in the form of a transformation rule. The rule consists
of a point-cut and an advice, the point-cut specifying the place in the original
model (join-point) that has to be amended with the model fragment described
in the advice of the rule. This kind of variability modeling approach can handle
complex variability and cope with many shortcomings of the internal approach
as described in the previous paragraph (esp. splitting of a single conceptual vari-
ability across many variation points). However, a difficulty with this approach is
that things become extremely complex when several transformations affect the
same location in an artifact. Basically, external variability modeling changing
a default model can be used for all kinds of artifact variability, but its actual
power lies in its great expressiveness: in contrast to the internal variability mod-
eling approach, which is bound to the principal design of the default model, an
external variability modeling approach can change entire parts of the design and
rearrange or exchange completely independent design fragments. Thus especially
in cases where variability results in a rearrangement of the design, an external
approach would be worth considering.

Internal and Generative Variability Management Approaches
Remarkably, so far no approaches have been published in the literature describing
variability in the artifacts with a generative/constructive artifact configuration
(field in the top left of the matrix). This may be due to the fact that a variability
description in artifact elements is usually limited to capturing simple variabil-
ity and dependency relations in order to remain straightforward and manage-
able. As mentioned above, complex variability and dependency modeling calls
for an orthogonal view of the variable artifact elements because coherences with

www.manaraa.com

300 M.-O. Reiser, R.T. Kolagari, and M. Weber

respect to variability and dependency of variable artifact elements cannot merely
be described at one element but are rather crosscutting. Here, a possible artifact
dimension variability approach would assume a domain with simple and local
variabilities and only technical dependencies (e.g. communication relationships).
In this case, the variability and dependency relationships can be described lo-
cally at the artifact elements, and a configuration can be derived only via the
element-based variability and dependency description. Although not an artifact
dimension variability management approach, a Java development library can be
thought of as the simplest approach to locally describe dependency relations and
where the configuration is constructive, though not tool-supported.

Discussion
The remainder of this section discusses the results of table 1:

(1) Currently no internal and generative variability management approaches
exist. Potential use could be in a case of simple, local occurrence of variability. Such
a technique would have to be simple and may influence other variability manage-
ment approaches to become easier applicable in various practical situations.

(2) External variability management approaches augment the variability di-
mension with additional, artifact related information and therefore—at least
implicitly—establish a link between the artifact and variability dimensions. Use
of feature models as well as decision tables proved successful, especially in the
case of complex and highly interrelated variability. Use of feature models and
an explicit description of the artifact configuration based on a feature selection
ends up in a mixture of internal and external description of artifact variability.
Thus, it can be said that there is a continuum rather than a two-valued scale
from internal to external variability modeling approaches.

(3) The most flexible technique to manage artifact variability is an internal
and alterative approach. A default model containing variation points is changed
in the course of the variation point instantiation. This technique is broadly used
in programming (e.g. abstract parameters, types) and therefore often the first
choice to manage variability of artifacts. In complex cases however, the spreading
of variability information throughout the system models my prove infeasible. In
this case a mixture between both an internal and external, generative approach
would be needed.

(4) A more complex but powerful way to change a default model is the use
of model transformation rules. With the help of these rules complete parts of
the model can be rearranged and changes in different artifacts at various places
can be defined together in a single rule. But because of its complexity model
transformation should only be used in cases where this flexibility is needed. In
all other cases an internal way to change the default model should be chosen.

It can be observed that most of the approaches applied in practice are mixtures
between internal and external, generative and alterative variability management
techniques; this is beneficial because the decoupled approaches complement one
another.

www.manaraa.com

Manifoldness of Variability Modeling 301

4 Potential for Further Integration

Based on this survey of fundamental approaches to variability modeling and their
interrelations presented in the previous two sections, we can now come back to
our initial question whether this diversity of variability modeling techniques is
actually required, or whether it would make sense to aim for replacing them with
a single, comprehensive variability modeling technique.

First of all, a single technique for variability modeling both in the variabil-
ity and in the artifact dimension is not realistic. These two cases of variability
modeling are of very different nature actually: In the variability dimension, an
overview of variations across many artifacts is to be provided on an abstract,
conceptual level while in the artifact dimension, the variations of an individual
artifact, i.e. the impact of variability, need to be defined precisely. Thus, the
technique for the artifact dimension introduces variability in an existing arti-
fact while the technique for the variability dimension constitutes an additional
artifact of its own.

Consequently, the highest degree of integration that is conceivable would be
to have a single technique for managing variability in the artifact dimension
and another for the variability dimension. In the artifact dimension, however,
the fundamental approaches towards variability modeling illustrated in Table 1
differ greatly and are aligned with very diverse methodological requirements (as
described in Section 3). Therefore an integration would not make sense at this
point. The next lower level of integration would be to provide a single, integrated
technique for each of the four cells of Table 1. But also this is not feasible in
practice, because of the great diversity of the development artifacts that need to
be covered by these techniques. For example a requirements specification may
call for very different means to express variability than a test case description;
similarly, the concept of aspect-orientation proved feasible for weaving variabil-
ity into program code but its application to design models is still a challenging
research issue. This diversity can be seen as being orthogonal to the two di-
mensions of Table 1. In order to ensure usability it is necessary to tailor the
variability technique to the specific characteristics and needs of the artifact in
question. Hence, the artifact dimension does not have great potential for a fur-
ther integration of techniques.

For the variability dimension, on the other hand, this is much different. The
variability dimension represents an artifact of its own and has a global perspective
spanning all other development artifacts. It therefore needs to be independent of
the artifacts’ specificities anyhow. In addition, we identified that the different ba-
sic approaches towards variability modeling in the variability dimension all share
the same major objective: establishing a global perspective on variations within
the product line and defining dependencies between them. Practical considera-
tions also suggest an integration of approaches: While the definition of the precise
impact of variability inside an artifact (i.e. the purpose of variability modeling
in the artifact dimension) usually is the responsibility of a single team working on
the corresponding artifact, the global variability dimension is frequently subject to

www.manaraa.com

302 M.-O. Reiser, R.T. Kolagari, and M. Weber

coordination between teams, departments and companies. Therefore, an integra-
tion in this area would be of high practical value.

However, we also identified substantial disparities between the basic approaches
for variability dimension modeling, esp. the lack of commonality and hierarchy in
decision tables. An integration will therefore be a challenging task and requires
significant further research.

5 Summary and Conclusion

We surveyed current techniques for managing variability and, by categorizing
them, identified several main approaches to variability modeling and examined
how these are related. Based on this, we discussed the potential of integrating
them into a single, common technique for variability modeling. We argued that
such an integration effort should be targeted at the variability dimension only,
both for practical and conceptual reasons.

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley, Reading (2002)

2. Bachmann, F., Goedicke, M., do Prado Leite, J.C.S., Nord, R.L., Pohl, K., Ramesh,
B., Vilbig, A.: A meta-model for representing variability in product family devel-
opment. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 66–80.
Springer, Heidelberg (2004)

3. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (foda) – feasibility study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute (SEI), Carnegie Mellon University (1990)

4. Asikainen, T., Männistö, T., Soininen, T.: A unified conceptual foundadtion for
feature modelling. In: 10th International Software Product Line Conference (SPLC
2006), pp. 31–40 (2006)

5. Batory, D.: Feature models, grammars, and propositional formulas. Technical Re-
port TR-05-14, University of Texas at Austin (2005)

6. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based fea-
ture models and their specialization. Software Process: Improvement and Prac-
tices 10(1), 7–29 (2005)

7. Czarnecki, K., Kim, C.H.P.: Cardinality-based feature modeling and constraints:
A progress report. In: Proceedings of the OOPSLA 2005 Workshop on Software
Factories (oct 2005)

8. Muthig, D., John, I., Anastasopoulos, M., Forster, T., Dörr, J., Schmid, K.:
Gophone – a software product line in the mobile phone domain. IESE-Report
025.04/E, Fraunhofer IESE (2004)

9. Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T.,
DeBaud, J.M.: Pulse: a methodology to develop software product lines. In: SSR
1999: Proceedings of the 1999 symposium on Software reusability, pp. 122–131.
ACM Press, New York (1999)

10. TreeAge Software: TreeAge Software Inc. DATA Interactive White Paper (1999),
http://www.treeage.com/DIDocs/start/whitePaper.php3

http://www.treeage.com/DIDocs/start/whitePaper.php3

www.manaraa.com

Manifoldness of Variability Modeling 303

11. Apprentice Systems Inc.: Apprentice Decision Modeler (2005),
http://www.apprenticesystems.com

12. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Feature diagrams: A
survey and a formal semantics. In: Proceedings of the 14th IEEE International
Requirements Engineering Conference (RE 2006), pp. 136–145. IEEE Computer
Society, Los Alamitos (2006)

13. Reiser, M.O., Tavakoli Kolagari, R., Weber, M.: Unified feature modeling as a ba-
sis for managing complex system families. In: Proceedings of the 1st International
Workshop on Variability Modeling of Software-Intensive Systems (VAMOS), Uni-
versity of Limerick, Ireland (2007)

14. Tessier, P., Gérard, S., Terrier, F., Geib, J.-M.: Using variation propagation for
model-driven management of a system family. In: Obbink, H., Pohl, K. (eds.) SPLC
2005. LNCS, vol. 3714, pp. 222–233. Springer, Heidelberg (2005)

15. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer, Heidelberg (2005)

16. Czarnecki, K.: Overview of generative software development. In: Banâtre, J.-P.,
Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 313–
328. Springer, Heidelberg (2005)

17. Czarnecki, K., Eisenecker, U.: Generative Programming. Addison-Wesley, Reading
(2000)

http://www.apprenticesystems.com

www.manaraa.com

Author Index

Abrahamsson, Pekka 143, 252
Ambler, Scott W. 1

Biela, Wojciech 96
Biffl, Stefan 208, 267
Boake, Andrew 84

Capilla, Rafael 182
Cichocki, Przemyslaw 169
Cyra, �Lukasz 26

Eckhard, Benedikt 208
Eessaar, Erki 40
Eriksson, Jeanette 279

Falda, Grzegorz 103

Górski, Janusz 26
Grünbacher, Paul 69

Habela, Piotr 103
Heindl, Matthias 208, 267
Hoyer, Christopher 69

Ishigai, Yasushi 223

Kaczmarski, Krzysztof 103
Kawaguchi, Takashi 223
Kourie, Derrick 84
Kowalewski, Stefan 157

Maccari, Alessandro 169
Madeyski, Lech 96
Moser, Raimund 252
Mulugeta, Mesfin 238
Münch, Jürgen 223

Nava, Francisco 182
Nawrocki, Jerzy 55
Noor, Muhammad Asim 69

Ochodek, Miros�law 55
Ochs, Michael 223

Pedrycz, Witold 252

Reiser, Mark-Oliver 291
Rombach, Dieter 13
Rychlý, Marek 196

Schatten, Alexander 208
Schill, Alexander 238
Schilli, David 157
Seelisch, Frank 13
Silingas, Darius 116
Sillitti, Alberto 252
Siniaalto, Maria 143
Stencel, Krzysztof 103
Subieta, Kazimierz 103
Succi, Giancarlo 252
Szlenk, Marcin 129

Tavakoli Kolagari, Ramin 291
Theunissen, Morkel 84
Tichá, Pavĺına 196
Trendowicz, Adam 223

Vitiutinas, Ruslanas 116

Wahyudin, Dindin 208
Weber, Matthias 291
Wickenkamp, Axel 223
Wilking, Dirk 157

	Tile Page
	Preface
	Organization
	Table of Contents
	Agile Software Development at Scale
	Introduction
	Scaling Factors
	Strategies for Scaling Agile Approaches
	Consider the Full System Lifecycle
	Agile Model Driven Development (AMDD)
	Continuous Independent Testing
	Risk and Value-Driven Development
	Agile Database Techniques
	Lean Development Governance

	Conclusion
	References

	Formalisms in Software Engineering: Myths Versus Empirical Facts
	Introduction
	The Role of Software in Industry
	Software as Driver for Innovation
	Economic Aspects of Software Development

	Practice of Software Engineering
	Problems
	Reasons for Current Problems
	Future Trends and Challenges

	Research in Software Engineering
	Computer Science and Software Engineering
	Software Engineering Principles
	Empirical Evidence
	Evidence Is Context-Dependent

	Empirical Software Engineering
	Facts Versus Myths
	Example: Reading

	Conclusions and Outlook
	References

	Extending GQM by Argument Structures
	Introduction
	GQM
	GAM
	Comparison of the Approaches
	Trust Cases
	Case Study: Overview of the Problem
	Case Study: Application of GAM
	Summary
	References

	On Metamodel-Based Design of Software Metrics
	Introduction
	On Using Metamodels in the Development of Metrics
	New Means of Using Metamodels in Metrics Development

	Case Study: Object-Relational Database Design Metrics
	On Evaluating the Wording of Existing ORSQL Database Design Metrics
	On Designing ORTTM Database Design Metrics Based on Existing Metrics
	On Evaluating the Extent of Sets of Database Design Metrics

	Conclusions
	References

	Automatic Transactions Identification in Use Cases
	Introduction
	Use-Case Transactions Counting Problem
	Definition of Use-Case Transaction
	Proposed Transaction Model

	Transaction Identification with NLP Tools
	Transaction Identification – A Case Study
	Comparison of System and Experts Results

	Transaction-Driven Use-Case Writing Style
	Conclusions
	References

	A Collaborative Method for Reuse Potential Assessment in Reengineering-Based Product Line Adoption
	Introduction
	Related Work
	A Collaborative Process for Reuse Potential Assessment
	Initial Evaluation
	Conclusions and Future Work
	References

	Corporate-, Agile- and Open Source Software Development: A Witch’s Brew or An Elixir of Life?
	Introduction
	OSSD and Corporate Culture
	OSSD and ASD
	OSSD Is Not ASD
	Adapting ASD

	An Illustrative Example
	Proposals
	Conclusion and Future Work
	References

	Capable Leader and Skilled and Motivated Team Practices to Introduce eXtreme Programming
	Background
	Keep the DICE R� Rolling
	Capable Leader
	Skilled and Motivated Team

	Conclusions
	Acknowledgements
	References

	Platform-Independent Programming of Data-Intensive Applications Using UML
	Introduction
	Motivation
	Standard Base
	Language Development
	Challenges of the Development Process
	Conclusions and Future Work
	References

	Towards UML-Intensive Framework for Model-DrivenDevelopment
	Introduction
	Conceptual Framework for Model-Driven Development
	MagicLibrary: A Case Study
	A Case Study Problem Statement
	Analyze Business Domain
	Define System Requirements
	Define Architecture
	Perform Detailed Design
	Implement Code
	Implement Tests

	Enabling Toolkit for Model-Driven Development
	Summary
	References

	UML Static Models in Formal Approach
	Introduction
	Metalanguage
	Syntax
	Semantics
	Consequence
	Refinement

	Equivalence
	An Example of Equivalence

	Conclusion
	References

	Does Test-Driven Development Improve the Program Code? Alarming Results from a Comparative Case Study
	Introduction
	Related Work
	Metrics to Study Changes in Program Structure
	Traditional Metrics
	Dependency Management Metrics

	Empirical Results from a Comparative Case Study
	Research Design
	Results
	Threats to Validity

	Discussion
	Conclusion
	References

	Measuring the Human Factor with the Rasch Model
	Introduction
	The Dichotomous Rasch Model
	Examples of Questions
	Advantages of the Rasch Model
	Application to Software Engineering

	Experimental Evaluation for the Variable C Language Knowledge
	Overview
	Participants and Background
	Tasks and Procedure
	Internal and External Validity
	Results
	Test Revision

	Further Concepts
	Viscosity
	Experience

	Conclusions
	References

	Empirical Analysis of a Distributed Software Development Project
	Introduction
	Research Background
	Motivations
	Research Goal
	Research Philosophy and Approach
	Project Team Environment

	Survey Characterization
	Results
	Methods and Tools
	Project Management Techniques
	Cultural Differences

	Validity
	Internal Validity
	External Validity

	Conclusions
	References

	Extending Software Architecting Processes with Decision-Making Activities
	Introduction
	Representing and Creating Architectural Design Decisions
	Lifecycle for AK Creation

	Activities for Recording and Using Architectural Knowledge
	Making AK Explicit with Tool Support
	New Features in ADDSS 2.0
	Decision-Making Process with ADDSS 2.0
	Impact on Traditional Architecting Activities

	Conclusions and Future Work
	References

	A Tool for Supporting Feature-Driven Development
	Introduction
	Feature Driven Development (FDD)
	Roles and Responsibilities in the FDD Processes

	Software Support for the FDD Method
	Design of the Tool for Supporting FDD
	Implementation and Practical Results
	Discussion and Related Work
	Conclusion and Future Work
	References

	In-Time Role-Specific Notification as Formal Means to Balance Agile Practices in Global Software Development Settings
	Introduction
	Related Work
	Agile Methods Adoption in GSD Settings
	The Needs for Formalization in GSD and Agile Contexts

	The Concept of In-Time Role-Specific Notification to Balance Agile Practices in GSD Settings
	Current Reality of Agile-Global Software Development
	Research Issues
	In-Time Role-Specific Notification: Definition and Concept
	Tool Integration and Support

	Example Scenario
	Initial Empirical Evaluations
	Discussion
	Conclusions
	References

	An Integrated Approach for Identifying Relevant Factors Influencing Software Development Productivity
	Introduction
	Related Work
	An Integrated Factor Selection Method
	Expert-Based Factor Selection
	Data-Based Factor Selection
	An Integrated Factor Selection Method

	Empirical Study
	Study Objectives and Hypotheses
	Study Context and Empirical Data
	Study Limitations
	Study Design and Execution

	Results of the Empirical Study
	Threats to Validity

	Summary and Further Work
	References

	A Framework for QoS Contract Negotiation in Component-Based Applications
	Introduction
	Related Work
	Framework Architecture and Interaction
	Architecture
	Interaction

	Implementation and Example
	Example
	Implementation
	Experiences

	Conclusions and Outlook
	References

	A Case Study on the Impact of Refactoring on Quality and Productivity in an Agile Team
	Introduction
	Research Methodology and Experimental Set-Up
	Research Hypotheses
	Explicit Refactorings, Productivity, and Quality
	Data Collection
	Data Analysis Method

	Case Study
	Context of the Case Study
	H0A – Does Productivity Increase After “Explicit Refactorings”?
	H0B –– Cohesion, Coupling and Complexity: Does Refactoring Improve Code Quality?

	Threats to Validity
	Conclusions
	References

	Modeling of Requirements Tracing
	Introduction
	Related Work on Requirements Tracing and Re-testing
	An Initial Tracing Activity Model
	Tracing Process Variants, Activities, and Parameters
	Research Objectives

	Application of the TAM in an Industrial Feasibility Study
	Discussion
	Conclusion and Further Work
	References

	Support for Cooperative Design of End-User Tailorable Software
	Introduction
	Categorization of Tailoring
	Research Method
	Design of Interviews
	Analysis

	Result
	Discussion
	Conclusion
	References

	Manifoldness of Variability Modeling — Considering the Potential for Further Integration
	Introduction
	Variability Dimension
	Artifact Dimension Variability
	Potential for Further Integration
	Summary and Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

